https://github.com/chris10m/real-time-semantic-segmentation

https://github.com/chris10m/real-time-semantic-segmentation

Science Score: 10.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
  • codemeta.json file
  • .zenodo.json file
  • DOI references
  • Academic publication links
    Links to: arxiv.org
  • Academic email domains
  • Institutional organization owner
  • JOSS paper metadata
  • Scientific vocabulary similarity
    Low similarity (8.9%) to scientific vocabulary

Keywords

cityscapes real-time real-time-semantic-segmentation segmentation semantic-segmentation
Last synced: 5 months ago · JSON representation

Repository

Basic Info
  • Host: GitHub
  • Owner: Chris10M
  • License: mit
  • Language: Python
  • Default Branch: main
  • Homepage:
  • Size: 4.97 MB
Statistics
  • Stars: 7
  • Watchers: 2
  • Forks: 1
  • Open Issues: 0
  • Releases: 0
Topics
cityscapes real-time real-time-semantic-segmentation segmentation semantic-segmentation
Created almost 5 years ago · Last pushed almost 5 years ago
Metadata Files
Readme License

README.md

MobileNetV3 real-time semantic segmentation

python-image pytorch-image lic-image

This repository contains the implementation for a dual-path network with mobilenetv3-small backbone. I have used PSP module as the context aggregation block.

image

Requirements

The Cityscapes dataset, which can be downloaded here.

NOTE: The code has been tested in Ubuntu 18.04, and requirements.txt contains all the nessary packages.

Usage


Train

To train the model, we run train.py python3 train.py --root Cityscapes_root_directory --model_path optional_param, to resume training from a checkpoint.

Evaluate

The trainer, also evaluates the model for every save and logs the results, but if evaluation needs to be done for a particular model, we run evaluate.py

python3 evaluate.py --root Cityscapes_root_directory --model_path saved_model_path_to_evaluate.

Evaluate Server

The evaluateserver.py evaluates the model, and store the segmentation masks in *cityscapesresults* folder created in the root path of the script. This is used for submiting the results to Cityscapes evaluation server.

python3 evaluate_server.py --root Cityscapes_root_directory --model_path saved_model_path_to_evaluate.

Demo

To visulaize the results, we run demo.py.

python3 demo.py --root Cityscapes_root_directory --model_path saved_model_path_to_run_demo.

Demo Single Image

To run inference on a single image, we run demosingle.py. Can run inference to any image given by imgpath.

python3 demo_single.py --model_path saved_model_path_to_run_demo. --img_path optional_param, default is images/demo.png.

Result

The FPS metrics are evaluated on a RTX2070. And evaluation was done by single scale input images.

  • Cityscapes

| Config | Params(M) | RES | FLOPS (G) | FP32(fps) | FP16(fps)| train-split | mIoU - val | mIoU - test | model | | :-------: | :--: | :----: | :----: | :---: | :-------:| :------: | :------: | :------: | :------: |
| MV3-Small + PSP + FFM | 1.74 |2048x1024 | 11.63 | 40.85 | 54.50 | train | 0.662 | 0.6388 | file (6.86MB) | | MV3-Small + PSP + FFM | 1.74 |1024x512 | 2.91 | 78.79 | 71.74 | train | 0.615 | - | file (6.86MB) | | MV3-Small + PSP + FFM | 1.74 |2048x1024 | 11.63 | 40.85 | 54.50 | train + val | 0.717 | 0.6559 | file (6.86MB) | | MV3-Small + PSP + FFM | 1.74 |1024x512 | 2.91 | 78.79 | 71.74 | train + val | 0.646 | - | file (6.86MB) |

Note: Params and FLOPS are got using torchstat.

To Do

  • [ ] Add mobilenetv3 large
  • [ ] Improve performance.
  • [ ] Add more configurations support.

Owner

  • Name: Christen Millerdurai
  • Login: Chris10M
  • Kind: user

PhD & Researcher @ AV DFKI-Kaiserslautern.

GitHub Events

Total
Last Year

Dependencies

requirements.txt pypi
  • Pillow ==8.2.0
  • cityscapesScripts ==2.2.0
  • geffnet ==1.0.0
  • imutils ==0.5.4
  • numpy ==1.19.5
  • opencv_contrib_python ==4.5.1.48
  • scikit_learn ==0.24.1
  • tabulate ==0.8.9
  • torch ==1.7.1
  • torchstat ==0.0.7
  • torchvision ==0.8.2
  • tqdm ==4.58.0