https://github.com/christophreich1996/optical-flow-visualization-pytorch

PyTorch implementation of the classical optical flow visualization by Baker et al. [ICCV 2007].

https://github.com/christophreich1996/optical-flow-visualization-pytorch

Science Score: 23.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
  • codemeta.json file
  • .zenodo.json file
  • DOI references
    Found 1 DOI reference(s) in README
  • Academic publication links
    Links to: springer.com
  • Academic email domains
  • Institutional organization owner
  • JOSS paper metadata
  • Scientific vocabulary similarity
    Low similarity (9.6%) to scientific vocabulary

Keywords

color-wheel flow motion optical-flow pytorch visualization
Last synced: 5 months ago · JSON representation

Repository

PyTorch implementation of the classical optical flow visualization by Baker et al. [ICCV 2007].

Basic Info
  • Host: GitHub
  • Owner: ChristophReich1996
  • License: mit
  • Language: Python
  • Default Branch: main
  • Homepage:
  • Size: 267 KB
Statistics
  • Stars: 28
  • Watchers: 3
  • Forks: 3
  • Open Issues: 0
  • Releases: 0
Topics
color-wheel flow motion optical-flow pytorch visualization
Created over 4 years ago · Last pushed over 3 years ago

https://github.com/ChristophReich1996/Optical-Flow-Visualization-PyTorch/blob/main/

# Optical Flow Visualization for PyTorch

[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://github.com/ChristophReich1996/Optical-Flow-Visualization-PyTorch/blob/master/LICENSE)

This repository is a PyTorch fork of the [OpticalFlow_Visualization](https://github.com/tomrunia/OpticalFlow_Visualization) (flow_vis) repository, originally published under the [MIT license](https://github.com/tomrunia/OpticalFlow_Visualization/blob/master/LICENSE.txt). The optical flow visualization follows the color encoding proposed in the paper "[A database and evaluation methodology for optical flow](https://link.springer.com/content/pdf/10.1007/s11263-010-0390-2.pdf)" by Baker et al. published at ICCV 2007 [1].

## Installation

Simply run the following command to install `flow_vis_torch`.

```shell script
pip install git+https://github.com/ChristophReich1996/Optical-Flow-Visualization-PyTorch
```

## Usage

Convert a given flow of the shape `[batch size (optional), 2, height, width]` to an RGB image of the shape `[batch size (optional), 3, height, width]` by calling `flow_vis_torch.flow_to_color`.

```python
import flow_vis_torch
flow_rgb = flow_vis_torch.flow_to_color(flow)
```

For a detailed example have a look at the [example script](example.py).

## Visualizations

Flow maps taken from the [MPI Sintel Flow Dataset](http://sintel.is.tue.mpg.de/) [2].

Output flow_vis_torch Output flow_vis
1 2
3 4
5 6
## References ```bibtex [1] @inproceedings{Baker2007, title={{A Database and Evaluation Methodology for Optical Flow}}, author={Baker, Simon and Roth, Stefan and Scharstein, Daniel and Black, Michael J and Lewis, JP and Szeliski, Richard}, booktitle={{International Conference on Computer Vision (ICCV)}}, pages={1--8}, year={2007}, organization={IEEE} } ``` ```bibtex [2] @inproceedings{Butler2012, title={{A Naturalistic Open Source Movie for Optical Flow Evaluation}}, author={Butler, Daniel J and Wulff, Jonas and Stanley, Garrett B and Black, Michael J}, booktitle={{European Conference on Computer Vision (ECCV)}}, pages = {611--625}, year = {2012}, publisher={Springer} } ```

Owner

  • Name: Christoph Reich
  • Login: ChristophReich1996
  • Kind: user
  • Location: Germany
  • Company: Technical University of Munich

ELLIS Ph.D. Student @ Technical University of Munich, Technische Universität Darmstadt & University of Oxford | Prev. NEC Labs

GitHub Events

Total
  • Watch event: 6
Last Year
  • Watch event: 6