BioMASS

Julia interface to BioMASS

https://github.com/biomass-dev/biomass.jl

Science Score: 67.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
    Found CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
    Found .zenodo.json file
  • DOI references
    Found 6 DOI reference(s) in README
  • Academic publication links
  • Committers with academic emails
    1 of 5 committers (20.0%) from academic institutions
  • Institutional organization owner
  • JOSS paper metadata
  • Scientific vocabulary similarity
    Low similarity (13.8%) to scientific vocabulary

Keywords

bifurcation bifurcation-diagram biochemical-networks computational-biology continuation differential-equations dynamical-systems julia kinetic-modeling modeling parameter-estimation simulation systems-biology systems-biology-simulation

Keywords from Contributors

cancer digital-twin in-silico-clinical-trial patient-specific-modeling personalized-medicine precision-medicine precision-oncology
Last synced: 6 months ago · JSON representation ·

Repository

Julia interface to BioMASS

Basic Info
Statistics
  • Stars: 0
  • Watchers: 1
  • Forks: 2
  • Open Issues: 0
  • Releases: 22
Topics
bifurcation bifurcation-diagram biochemical-networks computational-biology continuation differential-equations dynamical-systems julia kinetic-modeling modeling parameter-estimation simulation systems-biology systems-biology-simulation
Created over 5 years ago · Last pushed over 2 years ago
Metadata Files
Readme License Citation

README.md

The BioMASS module for Julia

Stable Dev Actions Status License: MIT Cancers Paper

This module provides a Julia interface to the BioMASS parameter estimation.

Installation

The package is a registered package, and can be installed with Pkg.add.

julia julia> using Pkg; Pkg.add("BioMASS")

or through the pkg REPL mode by typing

] add BioMASS

Python package requirements:

  • numpy - https://numpy.org
  • scipy - https://scipy.org
  • matplotlib - https://matplotlib.org

Example

Model development

This example shows you how to build a simple Michaelis-Menten two-step enzyme catalysis model.

E + S ⇄ ES → E + P

pasmopy.Text2Model allows you to build a BioMASS model from text. You simply describe biochemical reactions and the molecular mechanisms extracted from text are converted into an executable model.

Prepare a text file describing the biochemical reactions (e.g., michaelis_menten.txt)

``` E + S ⇄ ES | kf=0.003, kr=0.001 | E=100, S=50 ES → E + P | kf=0.002

@obs Substrate: u[S] @obs Efree: u[E] @obs Etotal: u[E] + u[ES] @obs Product: u[P] @obs Complex: u[ES]

@sim tspan: [0, 100] ```

Convert the text into an executable model

shell $ python # pasmopy requires Python 3.7+

```python

from pasmopy import Text2Model description = Text2Model("michaelismenten.txt", lang="julia") description.convert() # generate 'michaelismenten_jl/' ```

Simulate the model using BioMASS.jl

shell $ julia

```julia using BioMASS

model = Model("./michaelismentenjl"); run_simulation(model) ```

michaelis_menten

Parameter estimation

```julia using BioMASS

model = Model("./examples/fos_model");

Estimate unknown model parameters from experimental observations

scipydifferentialevolution(model, 1) # requires scipy package

Save simulation results to figure/ in the model folder

runsimulation(model, viztype="best", show_all=true) ```

estimated_parameter_sets

References

  • Imoto, H., Zhang, S. & Okada, M. A Computational Framework for Prediction and Analysis of Cancer Signaling Dynamics from RNA Sequencing Data—Application to the ErbB Receptor Signaling Pathway. Cancers 12, 2878 (2020). https://doi.org/10.3390/cancers12102878

  • Imoto, H., Yamashiro, S. & Okada, M. A text-based computational framework for patient -specific modeling for classification of cancers. iScience 25, 103944 (2022). https://doi.org/10.1016/j.isci.2022.103944

License

MIT

Owner

  • Name: BioMASS
  • Login: biomass-dev
  • Kind: organization

Open-source software project providing tools for modeling and analysis of biological signaling systems.

Citation (CITATION.cff)

cff-version: 1.2.0
message: "If you use this software in your work, please cite the following paper:"
preferred-citation:
  type: article
  authors:
  - family-names: "Imoto"
    given-names: "Hiroaki"
    orcid: "https://orcid.org/0000-0002-6817-642X"
  - family-names: "Zhang"
    given-names: "Suxiang"
  - family-names: "Okada"
    given-names: "Mariko"
    orcid: "https://orcid.org/0000-0002-6210-8223"
  doi: "10.3390/cancers12102878"
  journal: "Cancers"
  title: "A Computational Framework for Prediction and Analysis of Cancer Signaling Dynamics from RNA Sequencing Data—Application to the ErbB Receptor Signaling Pathway"
  issue: 10
  volume: 12
  start: 2878
  end: 2878
  year: 2020
  url: "https://www.mdpi.com/2072-6694/12/10/2878"

GitHub Events

Total
Last Year

Committers

Last synced: almost 3 years ago

All Time
  • Total Commits: 213
  • Total Committers: 5
  • Avg Commits per committer: 42.6
  • Development Distribution Score (DDS): 0.15
Top Committers
Name Email Commits
himoto 3****o@u****m 181
github-actions[bot] 4****]@u****m 14
Hiroaki Imoto h****o@p****p 14
CompatHelper Julia c****y@j****g 2
Hiroaki Imoto h****o@u****e 2
Committer Domains (Top 20 + Academic)

Issues and Pull Requests

Last synced: 6 months ago

All Time
  • Total issues: 5
  • Total pull requests: 63
  • Average time to close issues: 6 days
  • Average time to close pull requests: 5 days
  • Total issue authors: 2
  • Total pull request authors: 2
  • Average comments per issue: 8.0
  • Average comments per pull request: 0.0
  • Merged pull requests: 60
  • Bot issues: 0
  • Bot pull requests: 20
Past Year
  • Issues: 0
  • Pull requests: 0
  • Average time to close issues: N/A
  • Average time to close pull requests: N/A
  • Issue authors: 0
  • Pull request authors: 0
  • Average comments per issue: 0
  • Average comments per pull request: 0
  • Merged pull requests: 0
  • Bot issues: 0
  • Bot pull requests: 0
Top Authors
Issue Authors
  • himoto (4)
  • JuliaTagBot (1)
Pull Request Authors
  • himoto (43)
  • github-actions[bot] (19)
Top Labels
Issue Labels
enhancement (1) documentation (1)
Pull Request Labels
documentation (3)

Packages

  • Total packages: 1
  • Total downloads: unknown
  • Total dependent packages: 0
  • Total dependent repositories: 0
  • Total versions: 14
juliahub.com: BioMASS

Julia interface to BioMASS

  • Versions: 14
  • Dependent Packages: 0
  • Dependent Repositories: 0
Rankings
Dependent repos count: 9.9%
Dependent packages count: 38.9%
Forks count: 40.4%
Average: 40.6%
Stargazers count: 73.2%
Last synced: 6 months ago

Dependencies

.github/workflows/Documentation.yml actions
  • actions/checkout v2 composite
  • julia-actions/setup-julia latest composite
.github/workflows/TagBot.yml actions
  • JuliaRegistries/TagBot v1 composite
.github/workflows/ci.yml actions
  • actions/checkout v2 composite
  • julia-actions/julia-buildpkg v1 composite
  • julia-actions/julia-runtest v1 composite
  • julia-actions/setup-julia v1 composite
.github/workflows/CompatHelper.yml actions