Traja
Traja: A Python toolbox for animal trajectory analysis - Published in JOSS (2021)
Science Score: 98.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
✓CITATION.cff file
Found CITATION.cff file -
✓codemeta.json file
Found codemeta.json file -
✓.zenodo.json file
Found .zenodo.json file -
✓DOI references
Found 7 DOI reference(s) in README and JOSS metadata -
✓Academic publication links
Links to: joss.theoj.org, zenodo.org -
○Committers with academic emails
-
○Institutional organization owner
-
✓JOSS paper metadata
Published in Journal of Open Source Software
Keywords
animal-behavior
python
spatial-data-analysis
time-series-analysis
trajectory-analysis
Scientific Fields
Artificial Intelligence and Machine Learning
Computer Science -
87% confidence
Last synced: 4 months ago
·
JSON representation
·
Repository
Python tools for spatial trajectory and time-series data analysis
Basic Info
- Host: GitHub
- Owner: traja-team
- License: mit
- Language: Jupyter Notebook
- Default Branch: master
- Homepage: https://traja.readthedocs.io
- Size: 9.74 MB
Statistics
- Stars: 113
- Watchers: 9
- Forks: 25
- Open Issues: 35
- Releases: 10
Topics
animal-behavior
python
spatial-data-analysis
time-series-analysis
trajectory-analysis
Created almost 7 years ago
· Last pushed over 1 year ago
Metadata Files
Readme
Contributing
License
Citation
README.rst
Traja |Python-ver| |Travis| |PyPI| |Conda| |RTD| |Gitter| |Black| |License| |Binder| |Codecov| |DOI| |JOSS|
===========================================================================================================
|Colab|
.. |Python-ver| image:: https://img.shields.io/badge/python-3.6+-blue.svg
:target: https://www.python.org/downloads/release/python-360/
:alt: Python 3.6+
.. |Travis| image:: https://travis-ci.org/traja-team/traja.svg?branch=master
:target: https://travis-ci.org/traja-team/traja
.. |PyPI| image:: https://badge.fury.io/py/traja.svg
:target: https://badge.fury.io/py/traja
.. |Conda| image:: https://img.shields.io/conda/vn/conda-forge/traja.svg
:target: https://anaconda.org/conda-forge/traja
.. |Gitter| image:: https://badges.gitter.im/traja-chat/community.svg
:target: https://gitter.im/traja-chat/community
.. |RTD| image:: https://readthedocs.org/projects/traja/badge/?version=latest
:target: https://traja.readthedocs.io/en/latest/?badge=latest
:alt: Documentation Status
.. |Black| image:: https://img.shields.io/badge/code%20style-black-000000.svg
:target: https://github.com/ambv/black
.. |License| image:: https://img.shields.io/badge/License-MIT-blue.svg
:target: https://opensource.org/licenses/MIT
:alt: License: MIT
.. |Binder| image:: https://mybinder.org/badge_logo.svg
:target: https://mybinder.org/v2/gh/justinshenk/traja/master?filepath=demo.ipynb
.. |Codecov| image:: https://codecov.io/gh/traja-team/traja/branch/master/graph/badge.svg
:target: https://codecov.io/gh/traja-team/traja
.. |DOI| image:: https://zenodo.org/badge/DOI/10.5281/zenodo.5069231.svg
:target: https://doi.org/10.5281/zenodo.5069231
.. |Colab| image:: https://colab.research.google.com/assets/colab-badge.svg
:target: https://colab.research.google.com/github/justinshenk/traja/blob/master/demo.ipynb
.. |JOSS| image:: https://joss.theoj.org/papers/0f25dc08671e0ec54714f09597d116cb/status.svg
:target: https://joss.theoj.org/papers/0f25dc08671e0ec54714f09597d116cb
Traja is a Python library for trajectory analysis. It extends the capability of
pandas DataFrame specific for animal trajectory analysis in 2D, and provides
convenient interfaces to other geometric analysis packages (eg, R and shapely).
Introduction
------------
The traja Python package is a toolkit for the numerical characterization
and analysis of the trajectories of moving animals. Trajectory analysis
is applicable in fields as diverse as optimal foraging theory,
migration, and behavioral mimicry (e.g. for verifying similarities in
locomotion). A trajectory is simply a record of the path followed by a
moving animal. Traja operates on trajectories in the form of a series of
locations (as x, y coordinates) with times. Trajectories may be obtained
by any method which provides this information, including manual
tracking, radio telemetry, GPS tracking, and motion tracking from
videos.
The goal of this package (and this document) is to aid biological
researchers, who may not have extensive experience with Python, to
analyze trajectories without being restricted by a limited knowledge of
Python or programming. However, a basic understanding of Python is
useful.
If you use traja in your publications, please cite the repo
.. code-block::
@software{justin_shenk_2019_3237827,
author = {Justin Shenk and
the Traja development team},
title = {justinshenk/traja},
month = jun,
year = 2019,
publisher = {Zenodo},
version = {latest},
doi = {10.5281/zenodo.3237827},
url = {https://doi.org/10.5281/zenodo.3237827}
}
Installation and setup
----------------------
To install traja with conda, run
``conda install -c conda-forge traja``
or with pip
``pip install traja``.
Import traja into your Python script or via the Python command-line with
``import traja``.
Trajectories with traja
-----------------------
Traja stores trajectories in pandas DataFrames, allowing any pandas
functions to be used.
Load trajectory with x, y and time coordinates:
.. code-block:: python
import traja
df = traja.read_file('coords.csv')
Once a DataFrame is loaded, use the ``.traja`` accessor to access the
visualization and analysis methods:
.. code-block:: python
df.traja.plot(title='Cage trajectory')
Analyze Trajectory
------------------
.. csv-table:: The following functions are available via ``traja.trajectory.[method]``
:header: "Function", "Description"
:widths: 30, 80
"``calc_derivatives``", "Calculate derivatives of x, y values "
"``calc_turn_angles``", "Calculate turn angles with regard to x-axis "
"``transitions``", "Calculate first-order Markov model for transitions between grid bins"
"``generate``", "Generate random walk"
"``resample_time``", "Resample to consistent step_time intervals"
"``rediscretize_points``", "Rediscretize points to given step length"
For up-to-date documentation, see `https://traja.readthedocs.io `_.
Random walk
-----------
Generate random walks with
.. code-block:: python
df = traja.generate(n=1000, step_length=2)
df.traja.plot()
.. image:: https://raw.githubusercontent.com/justinshenk/traja/master/docs/source/_static/walk_screenshot.png
:alt: walk\_screenshot.png
Resample time
-------------
``traja.trajectory.resample_time`` allows resampling trajectories by a ``step_time``.
Flow Plotting
-------------
.. code-block:: python
df = traja.generate()
traja.plot_surface(df)
.. image:: https://traja.readthedocs.io/en/latest/_images/sphx_glr_plot_average_direction_001.png
:alt: 3D plot
.. code-block:: python
traja.plot_quiver(df, bins=32)
.. image:: https://traja.readthedocs.io/en/latest/_images/sphx_glr_plot_average_direction_002.png
:alt: quiver plot
.. code-block:: python
traja.plot_contour(df, filled=False, quiver=False, bins=32)
.. image:: https://traja.readthedocs.io/en/latest/_images/sphx_glr_plot_average_direction_003.png
:alt: contour plot
.. code-block:: python
traja.plot_contour(df, filled=False, quiver=False, bins=32)
.. image:: https://traja.readthedocs.io/en/latest/_images/sphx_glr_plot_average_direction_004.png
:alt: contour plot filled
.. code-block:: python
traja.plot_contour(df, bins=32, contourfplot_kws={'cmap':'coolwarm'})
.. image:: https://traja.readthedocs.io/en/latest/_images/sphx_glr_plot_average_direction_005.png
:alt: streamplot
Acknowledgements
----------------
traja code implementation and analytical methods (particularly
``rediscretize_points``) are heavily inspired by Jim McLean's R package
`trajr `__. Many thanks to Jim for his
feedback.
Owner
- Name: Traja
- Login: traja-team
- Kind: organization
- Website: traja.readthedocs.io
- Repositories: 2
- Profile: https://github.com/traja-team
Spatial trajectory analysis and modeling
JOSS Publication
Traja: A Python toolbox for animal trajectory analysis
Published
July 18, 2021
Volume 6, Issue 63, Page 3202
Authors
Tags
animal behavior trajectory multivariate time series neuroscienceCitation (CITATION)
@software{justin_shenk_2019_3237827,
author = {Justin Shenk and
the Traja development team},
title = {justinshenk/traja},
month = jun,
year = 2019,
publisher = {Zenodo},
version = {latest},
doi = {10.5281/zenodo.3237827},
url = {https://doi.org/10.5281/zenodo.3237827}
}
GitHub Events
Total
- Watch event: 11
Last Year
- Watch event: 11
Committers
Last synced: 5 months ago
Top Committers
| Name | Commits | |
|---|---|---|
| Justin Shenk | s****n@g****m | 583 |
| Wolf Byttner | w****f@r****k | 181 |
| Saran-nns | s****d@g****m | 164 |
| Madhav Thakker | m****r@M****l | 5 |
| Alec Zoeller | a****r@g****m | 4 |
| Madhav Thakker | t****v@g****m | 4 |
| JarnoRFB | r****e@w****e | 3 |
| Alex Liberzon | a****n@g****m | 1 |
| Jonas Otten | j****n@u****e | 1 |
Committer Domains (Top 20 + Academic)
uos.de: 1
rapidhealth.co.uk: 1
Issues and Pull Requests
Last synced: 4 months ago
All Time
- Total issues: 60
- Total pull requests: 42
- Average time to close issues: 2 months
- Average time to close pull requests: 7 days
- Total issue authors: 13
- Total pull request authors: 9
- Average comments per issue: 1.27
- Average comments per pull request: 1.48
- Merged pull requests: 33
- Bot issues: 0
- Bot pull requests: 2
Past Year
- Issues: 1
- Pull requests: 0
- Average time to close issues: N/A
- Average time to close pull requests: N/A
- Issue authors: 1
- Pull request authors: 0
- Average comments per issue: 2.0
- Average comments per pull request: 0
- Merged pull requests: 0
- Bot issues: 0
- Bot pull requests: 0
Top Authors
Issue Authors
- justinshenk (23)
- WolfByttner (13)
- Saran-nns (8)
- JarnoRFB (5)
- a-paxton (3)
- MaddyThakker (2)
- miaowangcissy (1)
- alisonsin (1)
- rodrigo-j-goncalves (1)
- dhivya-jayaraman (1)
- AbigailMcGovern (1)
- Paddy159 (1)
- OmegAshEnr01n (1)
Pull Request Authors
- justinshenk (12)
- WolfByttner (11)
- Saran-nns (5)
- MaddyThakker (5)
- JarnoRFB (3)
- dependabot[bot] (2)
- jootten (2)
- alexlib (1)
- aleczoeller (1)
Top Labels
Issue Labels
enhancement (7)
good first issue (3)
help wanted (2)
invalid (2)
bug (1)
question (1)
Pull Request Labels
dependencies (2)
Packages
- Total packages: 2
-
Total downloads:
- pypi 90 last-month
-
Total dependent packages: 0
(may contain duplicates) -
Total dependent repositories: 1
(may contain duplicates) - Total versions: 51
- Total maintainers: 1
pypi.org: traja
Traja is a trajectory analysis and visualization tool
- Homepage: https://github.com/traja-team/traja
- Documentation: https://traja.rtfd.io/en/latest/
- License: MIT
-
Latest release: 22.0.0
published about 3 years ago
Rankings
Stargazers count: 7.5%
Forks count: 8.0%
Dependent packages count: 10.1%
Average: 12.7%
Downloads: 16.4%
Dependent repos count: 21.5%
Maintainers (1)
Last synced:
4 months ago
conda-forge.org: traja
- Homepage: https://github.com/traja-team/traja
- License: MIT
-
Latest release: 0.2.13
published over 4 years ago
Rankings
Forks count: 32.0%
Dependent repos count: 34.0%
Stargazers count: 34.3%
Average: 37.9%
Dependent packages count: 51.2%
Last synced:
4 months ago
Dependencies
requirements/docs.txt
pypi
- codecov *
- fastdtw *
- ipython *
- matplotlib *
- networkx *
- numpy ==1.18.5
- pandas >=1.2.0
- pytest *
- pytest-cov *
- scikit-learn *
- scipy *
- seaborn *
- shapely *
- sphinx *
- sphinx-gallery *
- sphinx_rtd_theme *
- torch *
requirements/extra.txt
pypi
- fastdtw *
- h5py *
- ipython *
- networkx *
- numba >=0.50.0
- pre-commit *
- pyDOE2 >=1.3.0
- pytest *
- scikit-learn *
- scipy >=1.4.1
- seaborn *
- shapely *
- torch *
requirements.txt
pypi
- fastdtw *
- matplotlib *
- networkx *
- numpy ==1.18.5
- pandas >=1.2.0
- scikit-learn *
- scipy >=1.4.1
- seaborn *
- shapely *
- statsmodels *
- torch *
.github/workflows/draft-pdf.yml
actions
- actions/checkout v2 composite
- actions/upload-artifact v1 composite
- openjournals/openjournals-draft-action master composite
.github/workflows/tests.yaml
actions
- actions/checkout v2 composite
- codecov/codecov-action v1 composite
- conda-incubator/setup-miniconda v2 composite
environment.yml
conda
- ipython
- matplotlib
- networkx
- numba >=0.50.0
- numpy
- pandas
- pillow
- pip
- pytest >=8.0.0
- pytorch
- scikit-learn
- scipy
- seaborn
- shapely
- sphinx
- statsmodels
docs/environment.yml
pypi
pyproject.toml
pypi
requirements/dev.txt
pypi
setup.py
pypi
