https://github.com/cmerinos/facomplex
R package for identify complex structure in factor analysis output
Science Score: 39.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
○CITATION.cff file
-
✓codemeta.json file
Found codemeta.json file -
✓.zenodo.json file
Found .zenodo.json file -
✓DOI references
Found 25 DOI reference(s) in README -
○Academic publication links
-
○Academic email domains
-
○Institutional organization owner
-
○JOSS paper metadata
-
○Scientific vocabulary similarity
Low similarity (5.5%) to scientific vocabulary
Keywords
Repository
R package for identify complex structure in factor analysis output
Basic Info
- Host: GitHub
- Owner: cmerinos
- License: gpl-3.0
- Language: R
- Default Branch: main
- Homepage: https://github.com/cmerinos/facomplex
- Size: 1.27 MB
Statistics
- Stars: 1
- Watchers: 1
- Forks: 0
- Open Issues: 0
- Releases: 0
Topics
Metadata Files
README.html
README facomplex
facomplex is an R package that provides tools for assessing factor complexity in exploratory and confirmatory factor analysis (EFA/CFA) solutions.
Installation
You can install the development version of facomplex from GitHub using:
# Install devtools if not already installed install.packages("devtools") # Then install the package from GitHub devtools::install_github("cmerinos/facomplex", build_vignettes = TRUE)Overview
The package includes several methods for evaluating factor complexity:
- Hofman coefficient (Hofman, 1977)
- Revised Hofman coefficient
- Factor Simplicity Index (FSI) (Fleming, 2003)
- Bentler’s Simplicity Index (Bentler, 1977)
- Loading Simplicity Index (Lorenzo-Seva, 2003)
- Descriptive statistics (min, max, mean) of target and non-target loadings
- Visualization tools for complexity structures
Example
Here’s a basic example using
facomplex:library(facomplex) # Example factor loading matrix ex1_fl <- data.frame( F1 = c(0.536, 0.708, 0.600, 0.673, 0.767, 0.481, -0.177, 0.209, -0.097, -0.115, 0.047, 0.024), F2 = c(-0.110, 0.026, 0.076, 0.011, -0.160, 0.106, 0.668, 0.438, 0.809, 0.167, 0.128, 0.041), F3 = c(-0.100, 0.036, 0.086, 0.021, -0.150, 0.116, 0.678, 0.448, 0.819, 0.577, 0.738, 0.751) ) # Run a complexity analysis function (e.g., FSI) FSIout <- FSI(ex1_fl, items_target = list(F1 = c(1, 2, 3, 4, 5, 6), F2 = c(7, 8, 9), F3 = c(10, 11, 12))) # Visualize the results plot.simplicity( data = FSIout$FSI_i, item.col = "Items", value.col = "FSI_i")References
Bentler, P. M. (1977). Factor Simplicity Index and Transformations. Psychometrika, 42(2), 277–295. https://doi.org/10.1007/BF02294054
Fleming, J. S. (1985). An index of fit for factor scales. Educational and Psychological Measurement, 45, 725-728. https://doi.org/10.1177/0013164485454002
Fleming, J. S. (2003). Computing measures of simplicity of fit for loadings in factor-analytically derived scales. Behavior Research Methods, Instruments, & Computers, 35, 520–524. https://doi.org/10.3758/BF03195531
Fleming, J., S. & Merino-Soto, C. (2005). Medidas de simplicidad y de ajuste factorial: un enfoque para la evaluación de escalas construidas factorialmente. Revista de Psicología, 23(2), 249-266.
Hofman, R. J. (1977). Simplicity and complexity in factor analysis. Multivariate Behavioral Research, 12(2), 149–165. https://doi.org/10.18800/psico.200502.002
Kaiser, H. F. (1974). An Index of Factorial Simplicity. Psychometrika, 39(1), 31–36. https://doi.org/10.1007/BF02291575
Lorenzo-Seva, U. (2003). A factor simplicity index. , 68(1), 49–60. https://doi.org/10.1007/BF02296652
License
This package is licensed under the GPL-3.
Owner
- Name: Cesar Merino-Soto
- Login: cmerinos
- Kind: user
- Repositories: 1
- Profile: https://github.com/cmerinos
PhD; Psychologist; quantitative methodology, psychometric analysis, nonparametric analysis, content validity.
GitHub Events
Total
- Member event: 1
- Public event: 1
- Push event: 48
Last Year
- Member event: 1
- Public event: 1
- Push event: 48
Dependencies
- R >= 3.1.0 depends
- knitr * suggests
- rmarkdown * suggests