https://github.com/cmerinos/facomplex

R package for identify complex structure in factor analysis output

https://github.com/cmerinos/facomplex

Science Score: 39.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
    Found .zenodo.json file
  • DOI references
    Found 25 DOI reference(s) in README
  • Academic publication links
  • Academic email domains
  • Institutional organization owner
  • JOSS paper metadata
  • Scientific vocabulary similarity
    Low similarity (5.5%) to scientific vocabulary

Keywords

confirmatory-factor-analysis esem exploratory-factor-analysis exploratory-structural-equations-modeling factor-analysis factor-complexity item-analysis psychometric-analysis
Last synced: 5 months ago · JSON representation

Repository

R package for identify complex structure in factor analysis output

Basic Info
Statistics
  • Stars: 1
  • Watchers: 1
  • Forks: 0
  • Open Issues: 0
  • Releases: 0
Topics
confirmatory-factor-analysis esem exploratory-factor-analysis exploratory-structural-equations-modeling factor-analysis factor-complexity item-analysis psychometric-analysis
Created 11 months ago · Last pushed 6 months ago
Metadata Files
Readme License

README.html














README












































facomplex

facomplex is an R package that provides tools for assessing factor complexity in exploratory and confirmatory factor analysis (EFA/CFA) solutions.

Installation

You can install the development version of facomplex from GitHub using:

# Install devtools if not already installed
install.packages("devtools")

# Then install the package from GitHub
devtools::install_github("cmerinos/facomplex", build_vignettes = TRUE)

Overview

The package includes several methods for evaluating factor complexity:

  • Hofman coefficient (Hofman, 1977)
  • Revised Hofman coefficient
  • Factor Simplicity Index (FSI) (Fleming, 2003)
  • Bentler’s Simplicity Index (Bentler, 1977)
  • Loading Simplicity Index (Lorenzo-Seva, 2003)
  • Descriptive statistics (min, max, mean) of target and non-target loadings
  • Visualization tools for complexity structures

Example

Here’s a basic example using facomplex:

library(facomplex)

# Example factor loading matrix
ex1_fl <- data.frame(
  F1 = c(0.536, 0.708, 0.600, 0.673, 0.767, 0.481, -0.177, 0.209, -0.097, -0.115, 0.047, 0.024),
  F2 = c(-0.110, 0.026, 0.076, 0.011, -0.160, 0.106, 0.668, 0.438, 0.809, 0.167, 0.128, 0.041),
  F3 = c(-0.100, 0.036, 0.086, 0.021, -0.150, 0.116, 0.678, 0.448, 0.819, 0.577, 0.738, 0.751)
)

# Run a complexity analysis function (e.g., FSI)
FSIout <- FSI(ex1_fl,  
     items_target = list(F1 = c(1, 2, 3, 4, 5, 6),
                         F2 = c(7, 8, 9),
                         F3 = c(10, 11, 12)))

# Visualize the results
plot.simplicity(
   data = FSIout$FSI_i,
   item.col = "Items",
   value.col = "FSI_i")

References

  • Bentler, P. M. (1977). Factor Simplicity Index and Transformations. Psychometrika, 42(2), 277–295. https://doi.org/10.1007/BF02294054

  • Fleming, J. S. (1985). An index of fit for factor scales. Educational and Psychological Measurement, 45, 725-728. https://doi.org/10.1177/0013164485454002

  • Fleming, J. S. (2003). Computing measures of simplicity of fit for loadings in factor-analytically derived scales. Behavior Research Methods, Instruments, & Computers, 35, 520–524. https://doi.org/10.3758/BF03195531

  • Fleming, J., S. & Merino-Soto, C. (2005). Medidas de simplicidad y de ajuste factorial: un enfoque para la evaluación de escalas construidas factorialmente. Revista de Psicología, 23(2), 249-266.

  • Hofman, R. J. (1977). Simplicity and complexity in factor analysis. Multivariate Behavioral Research, 12(2), 149–165. https://doi.org/10.18800/psico.200502.002

  • Kaiser, H. F. (1974). An Index of Factorial Simplicity. Psychometrika, 39(1), 31–36. https://doi.org/10.1007/BF02291575

  • Lorenzo-Seva, U. (2003). A factor simplicity index. , 68(1), 49–60. https://doi.org/10.1007/BF02296652

License

This package is licensed under the GPL-3.

Owner

  • Name: Cesar Merino-Soto
  • Login: cmerinos
  • Kind: user

PhD; Psychologist; quantitative methodology, psychometric analysis, nonparametric analysis, content validity.

GitHub Events

Total
  • Member event: 1
  • Public event: 1
  • Push event: 48
Last Year
  • Member event: 1
  • Public event: 1
  • Push event: 48

Dependencies

DESCRIPTION cran
  • R >= 3.1.0 depends
  • knitr * suggests
  • rmarkdown * suggests