https://github.com/cmower/hyparam

Container for hyper parameter tuning in machine learning.

https://github.com/cmower/hyparam

Science Score: 23.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
  • DOI references
  • Academic publication links
  • Committers with academic emails
    1 of 2 committers (50.0%) from academic institutions
  • Institutional organization owner
  • JOSS paper metadata
  • Scientific vocabulary similarity
    Low similarity (6.5%) to scientific vocabulary

Keywords

hyperparameter-tuning machine-learning
Last synced: 5 months ago · JSON representation

Repository

Container for hyper parameter tuning in machine learning.

Basic Info
  • Host: GitHub
  • Owner: cmower
  • License: gpl-3.0
  • Language: Python
  • Default Branch: master
  • Homepage:
  • Size: 24.4 KB
Statistics
  • Stars: 0
  • Watchers: 1
  • Forks: 0
  • Open Issues: 0
  • Releases: 0
Topics
hyperparameter-tuning machine-learning
Created almost 3 years ago · Last pushed almost 3 years ago
Metadata Files
Readme License

README.md

hyparam

Container for hyper parameter tuning in machine learning.

Example

Load programmatically

You can add parameters to the parameter search space by using the following methods.

python hp = HyperParameters() hp.add_linspace("learning_rate", 0.1, 0.3, 3) hp.add_switch("use_test_dataset") hp.add_range("epochs", 10, 30, 10) hp.add_list("myvar", [1.0, 12.0, 8.0])

Load from file

You can instead specify a parameter space in a YAML configuration file.

```yaml learning_rate: type: linspace setup: lower: 0.1 upper: 0.3 num: 3

usetestdataset: type: switch

epochs: type: range setup: start: 10 stop: 30 step: 10

myvar: type: list setup: values: [1.0, 12.0, 8.0] ```

This is loaded into Python as follows.

python hp = HyperParameters.from_file(file_name)

Iterating over the parameter space

In both the above examples, you can iterate over the parameter space using the choices method. See the examples in the example directory. You should expect the following output when you run these.

choice(learning_rate=0.1, use_test_dataset=True, epochs=10, myvar=1.0) choice(learning_rate=0.1, use_test_dataset=True, epochs=10, myvar=12.0) choice(learning_rate=0.1, use_test_dataset=True, epochs=10, myvar=8.0) choice(learning_rate=0.1, use_test_dataset=True, epochs=20, myvar=1.0) choice(learning_rate=0.1, use_test_dataset=True, epochs=20, myvar=12.0) choice(learning_rate=0.1, use_test_dataset=True, epochs=20, myvar=8.0) choice(learning_rate=0.1, use_test_dataset=False, epochs=10, myvar=1.0) choice(learning_rate=0.1, use_test_dataset=False, epochs=10, myvar=12.0) choice(learning_rate=0.1, use_test_dataset=False, epochs=10, myvar=8.0) choice(learning_rate=0.1, use_test_dataset=False, epochs=20, myvar=1.0) choice(learning_rate=0.1, use_test_dataset=False, epochs=20, myvar=12.0) choice(learning_rate=0.1, use_test_dataset=False, epochs=20, myvar=8.0) choice(learning_rate=0.2, use_test_dataset=True, epochs=10, myvar=1.0) choice(learning_rate=0.2, use_test_dataset=True, epochs=10, myvar=12.0) choice(learning_rate=0.2, use_test_dataset=True, epochs=10, myvar=8.0) choice(learning_rate=0.2, use_test_dataset=True, epochs=20, myvar=1.0) choice(learning_rate=0.2, use_test_dataset=True, epochs=20, myvar=12.0) choice(learning_rate=0.2, use_test_dataset=True, epochs=20, myvar=8.0) choice(learning_rate=0.2, use_test_dataset=False, epochs=10, myvar=1.0) choice(learning_rate=0.2, use_test_dataset=False, epochs=10, myvar=12.0) choice(learning_rate=0.2, use_test_dataset=False, epochs=10, myvar=8.0) choice(learning_rate=0.2, use_test_dataset=False, epochs=20, myvar=1.0) choice(learning_rate=0.2, use_test_dataset=False, epochs=20, myvar=12.0) choice(learning_rate=0.2, use_test_dataset=False, epochs=20, myvar=8.0) choice(learning_rate=0.3, use_test_dataset=True, epochs=10, myvar=1.0) choice(learning_rate=0.3, use_test_dataset=True, epochs=10, myvar=12.0) choice(learning_rate=0.3, use_test_dataset=True, epochs=10, myvar=8.0) choice(learning_rate=0.3, use_test_dataset=True, epochs=20, myvar=1.0) choice(learning_rate=0.3, use_test_dataset=True, epochs=20, myvar=12.0) choice(learning_rate=0.3, use_test_dataset=True, epochs=20, myvar=8.0) choice(learning_rate=0.3, use_test_dataset=False, epochs=10, myvar=1.0) choice(learning_rate=0.3, use_test_dataset=False, epochs=10, myvar=12.0) choice(learning_rate=0.3, use_test_dataset=False, epochs=10, myvar=8.0) choice(learning_rate=0.3, use_test_dataset=False, epochs=20, myvar=1.0) choice(learning_rate=0.3, use_test_dataset=False, epochs=20, myvar=12.0) choice(learning_rate=0.3, use_test_dataset=False, epochs=20, myvar=8.0)

Install

From source

In a new terminal: 1. Clone repository: - (ssh) $ git clone git@github.com:cmower/hyparam.git, or - (https) $ git clone https://github.com/cmower/hyparam.git 2. Change directory: $ cd hyparam 3. Ensure pip is up-to-date: $ python -m pip install --upgrade pip 3. Install: $ pip install .

Owner

  • Name: Chris Mower
  • Login: cmower
  • Kind: user
  • Location: London, UK
  • Company: Huawei Technologies R&D

Senior Research Scientist at Huawei Technologies R&D.

GitHub Events

Total
Last Year

Committers

Last synced: over 1 year ago

All Time
  • Total Commits: 15
  • Total Committers: 2
  • Avg Commits per committer: 7.5
  • Development Distribution Score (DDS): 0.067
Past Year
  • Commits: 0
  • Committers: 0
  • Avg Commits per committer: 0.0
  • Development Distribution Score (DDS): 0.0
Top Committers
Name Email Commits
Christopher E. Mower c****r@k****k 14
Chris Mower c****r 1
Committer Domains (Top 20 + Academic)

Issues and Pull Requests

Last synced: 11 months ago

All Time
  • Total issues: 0
  • Total pull requests: 0
  • Average time to close issues: N/A
  • Average time to close pull requests: N/A
  • Total issue authors: 0
  • Total pull request authors: 0
  • Average comments per issue: 0
  • Average comments per pull request: 0
  • Merged pull requests: 0
  • Bot issues: 0
  • Bot pull requests: 0
Past Year
  • Issues: 0
  • Pull requests: 0
  • Average time to close issues: N/A
  • Average time to close pull requests: N/A
  • Issue authors: 0
  • Pull request authors: 0
  • Average comments per issue: 0
  • Average comments per pull request: 0
  • Merged pull requests: 0
  • Bot issues: 0
  • Bot pull requests: 0
Top Authors
Issue Authors
Pull Request Authors
Top Labels
Issue Labels
Pull Request Labels