@stdlib/stats-base-dnanmskrange

Calculate the range of a double-precision floating-point strided array according to a mask, ignoring NaN values.

https://github.com/stdlib-js/stats-base-dnanmskrange

Science Score: 44.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
    Found CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
    Found .zenodo.json file
  • DOI references
  • Academic publication links
  • Committers with academic emails
  • Institutional organization owner
  • JOSS paper metadata
  • Scientific vocabulary similarity
    Low similarity (14.9%) to scientific vocabulary

Keywords

dispersion domain extent extremes javascript math mathematics max maximum min minimum node node-js nodejs range statistics stats stdlib strided strided-array
Last synced: 4 months ago · JSON representation ·

Repository

Calculate the range of a double-precision floating-point strided array according to a mask, ignoring NaN values.

Basic Info
Statistics
  • Stars: 1
  • Watchers: 3
  • Forks: 0
  • Open Issues: 0
  • Releases: 0
Topics
dispersion domain extent extremes javascript math mathematics max maximum min minimum node node-js nodejs range statistics stats stdlib strided strided-array
Created over 4 years ago · Last pushed 7 months ago
Metadata Files
Readme Changelog Contributing License Code of conduct Citation Security

README.md

About stdlib...

We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.

The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.

When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.

To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!

dnanmskrange

NPM version Build Status Coverage Status <!-- dependencies -->

Calculate the range of a double-precision floating-point strided array according to a mask, ignoring NaN values.

The [**range**][range] is defined as the difference between the maximum and minimum values.
## Installation ```bash npm install @stdlib/stats-base-dnanmskrange ``` Alternatively, - To load the package in a website via a `script` tag without installation and bundlers, use the [ES Module][es-module] available on the [`esm`][esm-url] branch (see [README][esm-readme]). - If you are using Deno, visit the [`deno`][deno-url] branch (see [README][deno-readme] for usage intructions). - For use in Observable, or in browser/node environments, use the [Universal Module Definition (UMD)][umd] build available on the [`umd`][umd-url] branch (see [README][umd-readme]). The [branches.md][branches-url] file summarizes the available branches and displays a diagram illustrating their relationships. To view installation and usage instructions specific to each branch build, be sure to explicitly navigate to the respective README files on each branch, as linked to above.
## Usage ```javascript var dnanmskrange = require( '@stdlib/stats-base-dnanmskrange' ); ``` #### dnanmskrange( N, x, strideX, mask, strideMask ) Computes the [range][range] of a double-precision floating-point strided array according to a `mask`, ignoring `NaN` values. ```javascript var Float64Array = require( '@stdlib/array-float64' ); var Uint8Array = require( '@stdlib/array-uint8' ); var x = new Float64Array( [ 1.0, -2.0, 4.0, 2.0, NaN ] ); var mask = new Uint8Array( [ 0, 0, 1, 0, 0 ] ); var v = dnanmskrange( x.length, x, 1, mask, 1 ); // returns 4.0 ``` The function has the following parameters: - **N**: number of indexed elements. - **x**: input [`Float64Array`][@stdlib/array/float64]. - **strideX**: stride length for `x`. - **mask**: mask [`Uint8Array`][@stdlib/array/uint8]. If a `mask` array element is `0`, the corresponding element in `x` is considered valid and **included** in computation. If a `mask` array element is `1`, the corresponding element in `x` is considered invalid/missing and **excluded** from computation. - **strideMask**: stride length for `mask`. The `N` and stride parameters determine which elements in the strided array are accessed at runtime. For example, to compute the [range][range] of every other element in `x`, ```javascript var Float64Array = require( '@stdlib/array-float64' ); var Uint8Array = require( '@stdlib/array-uint8' ); var x = new Float64Array( [ 1.0, 2.0, -7.0, -2.0, 4.0, 3.0, 5.0, 6.0 ] ); var mask = new Uint8Array( [ 0, 0, 0, 0, 0, 0, 1, 1 ] ); var v = dnanmskrange( 4, x, 2, mask, 2 ); // returns 11.0 ``` Note that indexing is relative to the first index. To introduce offsets, use [`typed array`][mdn-typed-array] views. ```javascript var Float64Array = require( '@stdlib/array-float64' ); var Uint8Array = require( '@stdlib/array-uint8' ); var x0 = new Float64Array( [ 2.0, 1.0, -2.0, -2.0, 3.0, 4.0, 5.0, 6.0 ] ); var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element var mask0 = new Uint8Array( [ 0, 0, 0, 0, 0, 0, 1, 1 ] ); var mask1 = new Uint8Array( mask0.buffer, mask0.BYTES_PER_ELEMENT*1 ); // start at 2nd element var v = dnanmskrange( 4, x1, 2, mask1, 2 ); // returns 6.0 ``` #### dnanmskrange.ndarray( N, x, strideX, offsetX, mask, strideMask, offsetMask ) Computes the [range][range] of a double-precision floating-point strided array according to a `mask`, ignoring `NaN` values and using alternative indexing semantics. ```javascript var Float64Array = require( '@stdlib/array-float64' ); var Uint8Array = require( '@stdlib/array-uint8' ); var x = new Float64Array( [ 1.0, -2.0, 4.0, 2.0, NaN ] ); var mask = new Uint8Array( [ 0, 0, 1, 0, 0 ] ); var v = dnanmskrange.ndarray( x.length, x, 1, 0, mask, 1, 0 ); // returns 4.0 ``` The function has the following additional parameters: - **offsetX**: starting index for `x`. - **offsetMask**: starting index for `mask`. While [`typed array`][mdn-typed-array] views mandate a view offset based on the underlying buffer, offset parameters support indexing semantics based on starting indices. For example, to calculate the [range][range] for every other element in `x` starting from the second element ```javascript var Float64Array = require( '@stdlib/array-float64' ); var Uint8Array = require( '@stdlib/array-uint8' ); var x = new Float64Array( [ 2.0, 1.0, -2.0, -2.0, 3.0, 4.0, 5.0, 6.0 ] ); var mask = new Uint8Array( [ 0, 0, 0, 0, 0, 0, 1, 1 ] ); var v = dnanmskrange.ndarray( 4, x, 2, 1, mask, 2, 1 ); // returns 6.0 ```
## Notes - If `N <= 0`, both functions return `NaN`.
## Examples ```javascript var uniform = require( '@stdlib/random-base-uniform' ); var bernoulli = require( '@stdlib/random-base-bernoulli' ); var filledarrayBy = require( '@stdlib/array-filled-by' ); var dnanmskrange = require( '@stdlib/stats-base-dnanmskrange' ); function rand() { if ( bernoulli( 0.8 ) < 1 ) { return NaN; } return uniform( -50.0, 50.0 ); } var x = filledarrayBy( 10, 'float64', rand ); console.log( x ); var mask = filledarrayBy( x.length, 'uint8', bernoulli.factory( 0.2 ) ); console.log( mask ); var v = dnanmskrange( x.length, x, 1, mask, 1 ); console.log( v ); ```

## C APIs
### Usage ```c #include "stdlib/stats/base/dnanmskrange.h" ``` #### stdlib_strided_dnanmskrange( N, \*X, strideX, \*Mask, strideMask ) Computes the [range][range] of a double-precision floating-point strided array according to a `mask`, ignoring `NaN` values. ```c #include const double x[] = { 1.0, -2.0, 4.0, 2.0, 0.0/0.0 }; const uint8_t mask[] = { 0, 0, 1, 0, 0 }; double v = stdlib_strided_dnanmskrange( 5, x, 1, mask, 1 ); // returns 4.0 ``` The function accepts the following arguments: - **N**: `[in] CBLAS_INT` number of indexed elements. - **X**: `[in] double*` input array. - **strideX**: `[in] CBLAS_INT` stride length for `X`. - **Mask**: `[in] uint8_t*` mask array. If a `Mask` array element is `0`, the corresponding element in `X` is considered valid and included in computation. If a `Mask` array element is `1`, the corresponding element in `X` is considered invalid/missing and excluded from computation. - **strideMask**: `[in] CBLAS_INT` stride length for `Mask`. ```c double stdlib_strided_dnanmskrange( const CBLAS_INT N, const double *X, const CBLAS_INT strideX, const uint8_t *Mask, const CBLAS_INT strideMask ); ``` #### stdlib_strided_dnanmskrange_ndarray( N, \*X, strideX, offsetX, \*Mask, strideMask, offsetMask ) Computes the [range][range] of a double-precision floating-point strided array according to a `mask`, ignoring `NaN` values and using alternative indexing semantics. ```c #include const double x[] = { 1.0, -2.0, 4.0, 2.0, 0.0/0.0 }; const uint8_t mask[] = { 0, 0, 1, 0, 0 }; double v = stdlib_strided_dnanmskrange_ndarray( 5, x, 1, 0, mask, 1, 0 ); // returns 4.0 ``` The function accepts the following arguments: - **N**: `[in] CBLAS_INT` number of indexed elements. - **X**: `[in] double*` input array. - **strideX**: `[in] CBLAS_INT` stride length for `X`. - **offsetX**: `[in] CBLAS_INT` starting index for `X`. - **Mask**: `[in] uint8_t*` mask array. If a `Mask` array element is `0`, the corresponding element in `X` is considered valid and included in computation. If a `Mask` array element is `1`, the corresponding element in `X` is considered invalid/missing and excluded from computation. - **strideMask**: `[in] CBLAS_INT` stride length for `Mask`. - **offsetMask**: `[in] CBLAS_INT` starting index for `Mask`. ```c double stdlib_strided_dnanmskrange_ndarray( const CBLAS_INT N, const double *X, const CBLAS_INT strideX, const CBLAS_INT offsetX, const uint8_t *Mask, const CBLAS_INT strideMask, const CBLAS_INT offsetMask ); ```
### Examples ```c #include "stdlib/stats/base/dnanmskrange.h" #include #include int main( void ) { // Create a strided array: const double x[] = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 0.0/0.0, 0.0/0.0 }; // Create a mask array: const uint8_t mask[] = { 0, 0, 0, 0, 0, 0, 0, 0, 1, 1 }; // Specify the number of elements: const int N = 5; // Specify the stride lengths: const int strideX = 2; const int strideMask = 2; // Compute the range: double v = stdlib_strided_dnanmskrange( N, x, strideX, mask, strideMask ); // Print the result: printf( "range: %lf\n", v ); } ```

* * * ## Notice This package is part of [stdlib][stdlib], a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more. For more information on the project, filing bug reports and feature requests, and guidance on how to develop [stdlib][stdlib], see the main project [repository][stdlib]. #### Community [![Chat][chat-image]][chat-url] --- ## License See [LICENSE][stdlib-license]. ## Copyright Copyright © 2016-2025. The Stdlib [Authors][stdlib-authors].

Owner

  • Name: stdlib
  • Login: stdlib-js
  • Kind: organization

Standard library for JavaScript.

Citation (CITATION.cff)

cff-version: 1.2.0
title: stdlib
message: >-
  If you use this software, please cite it using the
  metadata from this file.

type: software

authors:
  - name: The Stdlib Authors
    url: https://github.com/stdlib-js/stdlib/graphs/contributors

repository-code: https://github.com/stdlib-js/stdlib
url: https://stdlib.io

abstract: |
  Standard library for JavaScript and Node.js.

keywords:
  - JavaScript
  - Node.js
  - TypeScript
  - standard library
  - scientific computing
  - numerical computing
  - statistical computing

license: Apache-2.0 AND BSL-1.0

date-released: 2016

GitHub Events

Total
  • Push event: 59
Last Year
  • Push event: 59

Committers

Last synced: almost 2 years ago

All Time
  • Total Commits: 54
  • Total Committers: 1
  • Avg Commits per committer: 54.0
  • Development Distribution Score (DDS): 0.0
Past Year
  • Commits: 15
  • Committers: 1
  • Avg Commits per committer: 15.0
  • Development Distribution Score (DDS): 0.0
Top Committers
Name Email Commits
stdlib-bot n****y@s****o 54
Committer Domains (Top 20 + Academic)

Issues and Pull Requests

Last synced: 5 months ago

All Time
  • Total issues: 0
  • Total pull requests: 0
  • Average time to close issues: N/A
  • Average time to close pull requests: N/A
  • Total issue authors: 0
  • Total pull request authors: 0
  • Average comments per issue: 0
  • Average comments per pull request: 0
  • Merged pull requests: 0
  • Bot issues: 0
  • Bot pull requests: 0
Past Year
  • Issues: 0
  • Pull requests: 0
  • Average time to close issues: N/A
  • Average time to close pull requests: N/A
  • Issue authors: 0
  • Pull request authors: 0
  • Average comments per issue: 0
  • Average comments per pull request: 0
  • Merged pull requests: 0
  • Bot issues: 0
  • Bot pull requests: 0
Top Authors
Issue Authors
Pull Request Authors
Top Labels
Issue Labels
Pull Request Labels

Packages

  • Total packages: 1
  • Total downloads:
    • npm 11 last-month
  • Total dependent packages: 3
  • Total dependent repositories: 1
  • Total versions: 14
  • Total maintainers: 4
npmjs.org: @stdlib/stats-base-dnanmskrange

Calculate the range of a double-precision floating-point strided array according to a mask, ignoring NaN values.

  • Homepage: https://stdlib.io
  • License: Apache-2.0
  • Latest release: 0.2.2
    published over 1 year ago
  • Versions: 14
  • Dependent Packages: 3
  • Dependent Repositories: 1
  • Downloads: 11 Last month
Rankings
Dependent packages count: 5.9%
Dependent repos count: 10.3%
Average: 12.9%
Forks count: 15.4%
Downloads: 16.0%
Stargazers count: 16.7%
Funding
  • type: opencollective
  • url: https://opencollective.com/stdlib
Last synced: 5 months ago

Dependencies

package.json npm
  • @stdlib/array-float64 ^0.0.x development
  • @stdlib/array-uint8 ^0.0.x development
  • @stdlib/assert-is-browser ^0.0.x development
  • @stdlib/bench ^0.0.x development
  • @stdlib/math-base-assert-is-positive-zero ^0.0.x development
  • @stdlib/math-base-special-floor ^0.0.x development
  • @stdlib/math-base-special-pow ^0.0.x development
  • @stdlib/math-base-special-round ^0.0.x development
  • @stdlib/random-base-randu ^0.0.x development
  • istanbul ^0.4.1 development
  • proxyquire ^2.0.0 development
  • tap-spec 5.x.x development
  • tape git+https://github.com/kgryte/tape.git#fix/globby development
  • @stdlib/assert-is-error ^0.0.x
  • @stdlib/math-base-assert-is-nan ^0.0.x
  • @stdlib/utils-define-nonenumerable-read-only-property ^0.0.x
  • @stdlib/utils-library-manifest ^0.0.x
  • @stdlib/utils-try-require ^0.0.x
.github/workflows/benchmark.yml actions
  • actions/checkout v3 composite
  • actions/setup-node v3 composite
.github/workflows/cancel.yml actions
  • styfle/cancel-workflow-action 0.11.0 composite
.github/workflows/close_pull_requests.yml actions
  • superbrothers/close-pull-request v3 composite
.github/workflows/examples.yml actions
  • actions/checkout v3 composite
  • actions/setup-node v3 composite
.github/workflows/npm_downloads.yml actions
  • actions/checkout v3 composite
  • actions/setup-node v3 composite
  • actions/upload-artifact v3 composite
  • distributhor/workflow-webhook v3 composite
.github/workflows/productionize.yml actions
  • act10ns/slack v1 composite
  • actions/checkout v3 composite
  • actions/setup-node v3 composite
  • stdlib-js/bundle-action main composite
  • stdlib-js/transform-errors-action main composite
.github/workflows/publish.yml actions
  • JS-DevTools/npm-publish v1 composite
  • act10ns/slack v1 composite
  • actions/checkout v3 composite
  • actions/setup-node v3 composite
  • styfle/cancel-workflow-action 0.11.0 composite
.github/workflows/test.yml actions
  • act10ns/slack v1 composite
  • actions/checkout v3 composite
  • actions/setup-node v3 composite
.github/workflows/test_bundles.yml actions
  • act10ns/slack v1 composite
  • actions/checkout v3 composite
  • actions/setup-node v3 composite
  • denoland/setup-deno v1 composite
.github/workflows/test_coverage.yml actions
  • act10ns/slack v1 composite
  • actions/checkout v3 composite
  • actions/setup-node v3 composite
  • codecov/codecov-action v3 composite
  • distributhor/workflow-webhook v3 composite
.github/workflows/test_install.yml actions
  • act10ns/slack v1 composite
  • actions/checkout v3 composite
  • actions/setup-node v3 composite