https://github.com/comp-physics/quantum-hrf-tomography

Reconstructing real-valued quantum states using Hadamard Random Forest (HRF) tomography 

https://github.com/comp-physics/quantum-hrf-tomography

Science Score: 36.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
    Found .zenodo.json file
  • DOI references
  • Academic publication links
    Links to: arxiv.org
  • Academic email domains
  • Institutional organization owner
  • JOSS paper metadata
  • Scientific vocabulary similarity
    Low similarity (14.3%) to scientific vocabulary

Keywords

quantum-error-mitigation quantum-state-tomography random-forest
Last synced: 5 months ago · JSON representation

Repository

Reconstructing real-valued quantum states using Hadamard Random Forest (HRF) tomography 

Basic Info
  • Host: GitHub
  • Owner: comp-physics
  • License: mit
  • Language: Jupyter Notebook
  • Default Branch: master
  • Homepage:
  • Size: 5.13 MB
Statistics
  • Stars: 2
  • Watchers: 3
  • Forks: 0
  • Open Issues: 0
  • Releases: 0
Topics
quantum-error-mitigation quantum-state-tomography random-forest
Created 10 months ago · Last pushed 6 months ago
Metadata Files
Readme License

README.md

Quantum HRF Tomography

HRF Banner

License: MIT Coverage Status arXiv

Efficient and Robust Reconstruction of Real-Valued Quantum States using Hadamard Random Forests

Summary

Fast: Reduces required quantum circuits from exponential to linear in the number of qubits
🎯 Accurate: Achieves 89% fidelity on 10-qubit real states using IBM quantum hardware
🧠 Smart: Uses a random forest over hypercube graphs for efficient sign reconstruction

Introduction

This is the code that accompanies the following paper: arxiv.org/abs/2505.06455

Install

We recommend cloning the repo. and installing locally:

bash git clone https://github.com/comp-physics/Quantum-HRF-Tomography cd Quantum-HRF-Tomography python -m venv qenv source qenv/bin/activate pip install -e . pip install jupyter

To visualize the tree structure, one needs to install Graphviz to enforce the graph layout. For macOS,

bash brew install graphviz pip install --global-option=build_ext \ --global-option="-I$(brew --prefix graphviz)/include" \ --global-option="-L$(brew --prefix graphviz)/lib" \ pygraphviz

Please refer to here for more instructions. Then one can use

python import hadamard_random_forest as hrf hrf.get_statevector(num_qubits, num_trees, samples, save_tree=True, show_tree=True)

Citation

bibtex @article{song2025reconstructing, author = {Zhixin Song and Hang Ren and Melody Lee and Bryan Gard and Nicolas Renaud and Spencer H. Bryngelson}, title = {Reconstructing Real-Valued Quantum States}, year = {2025}, eprint = {2505.06455}, archivePrefix= {arXiv}, primaryClass = {quant-ph} }

License

MIT

Owner

  • Name: Computational Physics @ GT CSE
  • Login: comp-physics
  • Kind: organization
  • Email: shb@gatech.edu

A computational physics research group with PI Spencer Bryngelson

GitHub Events

Total
  • Watch event: 1
  • Delete event: 2
  • Issue comment event: 1
  • Public event: 1
  • Push event: 36
  • Pull request event: 3
  • Create event: 1
Last Year
  • Watch event: 1
  • Delete event: 2
  • Issue comment event: 1
  • Public event: 1
  • Push event: 36
  • Pull request event: 3
  • Create event: 1

Dependencies

.github/workflows/ci.yml actions
  • actions/checkout v3 composite
  • actions/setup-python v4 composite
requirements.txt pypi
  • matplotlib >=3.9.1
  • mthree ==3.0.0
  • networkx >=3.3
  • pandas >=2.2.2
  • qiskit >=1.3.0
  • qiskit-aer >=0.14.2
  • qiskit-experiments >=0.10.0
  • qiskit-ibm-runtime >=0.33.2
  • scipy *
  • tqdm *
  • treelib >=1.7.0
setup.py pypi
  • matplotlib >=3.9.1
  • mthree ==3.0.0
  • networkx >3.3
  • numpy *
  • pandas >=2.2.2
  • qiskit >=1.3.0
  • qiskit-aer >=0.14.2
  • qiskit-experiments >=0.10.0
  • qiskit-ibm-runtime >=0.33.2
  • scipy *
  • tqdm *
  • treelib >=1.7.0