https://github.com/compnet/conivel

https://github.com/compnet/conivel

Science Score: 13.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
  • codemeta.json file
  • .zenodo.json file
  • DOI references
    Found 1 DOI reference(s) in README
  • Academic publication links
  • Academic email domains
  • Institutional organization owner
  • JOSS paper metadata
  • Scientific vocabulary similarity
    Low similarity (5.8%) to scientific vocabulary

Keywords

context-based literary-texts ner nlp novels
Last synced: 5 months ago · JSON representation

Repository

Basic Info
  • Host: GitHub
  • Owner: CompNet
  • Language: Python
  • Default Branch: master
  • Homepage:
  • Size: 6.93 MB
Statistics
  • Stars: 4
  • Watchers: 3
  • Forks: 1
  • Open Issues: 0
  • Releases: 2
Topics
context-based literary-texts ner nlp novels
Created over 3 years ago · Last pushed over 2 years ago
Metadata Files
Readme

README.md

Conivel: CONtext In noVELs

Looking for the code and data for The Role of Global and Local Context in Named Entity Recognition (ACL2023)? Go to the ACL2023 branch. bibtex @InProceedings{Amalvy2023, author = {Amalvy, Arthur and Labatut, Vincent and Dufour, Richard}, title = {The Role of Global and Local Context in Named Entity Recognition}, booktitle = {61st Annual Meeting of the Association for Computational Linguistics}, year = {2023}, pages = {714-722}, doi = {10.18653/v1/2023.acl-short.62}, }

Looking for the code and data for Learning to Rank Context for Named Entity Recognition Using a Synthetic Dataset (EMNLP2023)? Go to the gen branch. bibtex @InProceedings{Amalvy2023a, author = {Amalvy, Arthur and Labatut, Vincent and Dufour, Richard}, title = {Learning to Rank Context for Named Entity Recognition Using a Synthetic Dataset}, booktitle = {Conference on Empirical Methods in Natural Language Processing}, year = {2023}, pages = {10372-10382}, url = {https://aclanthology.org/2023.emnlp-main.642}, }

Installing dependencies

Use poetry install to install dependencies. You can then use poetry shell to obtain a shell with the created virtual environment activated.

Owner

  • Name: Complex Networks
  • Login: CompNet
  • Kind: organization
  • Location: Avignon, France

GitHub Events

Total
Last Year

Dependencies

poetry.lock pypi
  • apscheduler 3.6.3
  • attrs 21.4.0
  • backports.zoneinfo 0.2.1
  • cachetools 4.2.2
  • certifi 2022.5.18.1
  • charset-normalizer 2.0.12
  • click 8.1.3
  • colorama 0.4.4
  • commonmark 0.9.1
  • cycler 0.11.0
  • docopt 0.6.2
  • filelock 3.7.1
  • fonttools 4.33.3
  • gitdb 4.0.9
  • gitpython 3.1.27
  • huggingface-hub 0.7.0
  • hypothesis 6.46.11
  • idna 3.3
  • joblib 1.1.0
  • jsonpickle 1.5.2
  • kiwisolver 1.4.2
  • matplotlib 3.5.2
  • more-itertools 8.13.0
  • munch 2.5.0
  • nameparser 1.1.1
  • nltk 3.7
  • numpy 1.22.4
  • packaging 21.3
  • pillow 9.1.1
  • py-cpuinfo 8.0.0
  • pygments 2.12.0
  • pyparsing 3.0.9
  • python-dateutil 2.8.2
  • python-telegram-bot 13.13
  • pytz 2022.1
  • pytz-deprecation-shim 0.1.0.post0
  • pyyaml 6.0
  • rank-bm25 0.2.2
  • regex 2022.6.2
  • requests 2.27.1
  • rich 11.2.0
  • sacred 0.8.2
  • scienceplots 2.0.1
  • scikit-learn 1.1.1
  • scipy 1.8.1
  • seqeval 1.2.2
  • setuptools-scm 6.4.2
  • six 1.16.0
  • smmap 5.0.0
  • sortedcontainers 2.4.0
  • threadpoolctl 3.1.0
  • tokenizers 0.12.1
  • tomli 2.0.1
  • torch 1.11.0
  • tornado 6.2
  • tqdm 4.64.0
  • transformers 4.19.2
  • typing-extensions 4.2.0
  • tzdata 2022.1
  • tzlocal 4.2
  • urllib3 1.26.9
  • wrapt 1.14.1
pyproject.toml pypi
  • SciencePlots ^2.0.1
  • hypothesis ^6.36.1
  • matplotlib ^3.5.1
  • more-itertools ^8.12.0
  • nameparser ^1.1.0
  • nltk ^3.7
  • python ~3.8
  • python-telegram-bot ^13.13
  • rank-bm25 ^0.2.2
  • rich ^11.0.0
  • sacred ^0.8.2
  • scikit-learn ^1.1.1
  • seqeval ^1.2.2
  • torch ^1.10.1
  • tqdm ^4.62.3
  • transformers ^4.15.0