https://github.com/const-ae/ggquadrilateral

A quadrilateral geom for ggplot2

https://github.com/const-ae/ggquadrilateral

Science Score: 13.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
  • DOI references
  • Academic publication links
  • Academic email domains
  • Institutional organization owner
  • JOSS paper metadata
  • Scientific vocabulary similarity
    Low similarity (13.2%) to scientific vocabulary

Keywords

ggplot-extension ggplot2 polygon quadrilateral rstats
Last synced: 5 months ago · JSON representation

Repository

A quadrilateral geom for ggplot2

Basic Info
  • Host: GitHub
  • Owner: const-ae
  • Language: R
  • Default Branch: master
  • Size: 86.9 KB
Statistics
  • Stars: 2
  • Watchers: 2
  • Forks: 0
  • Open Issues: 0
  • Releases: 0
Topics
ggplot-extension ggplot2 polygon quadrilateral rstats
Created over 6 years ago · Last pushed over 6 years ago
Metadata Files
Readme

README.Rmd

---
output: github_document
---



```{r, include = FALSE}
knitr::opts_chunk$set(
  collapse = TRUE,
  comment = "#>",
  fig.path = "man/figures/README-",
  out.width = "70%"
)
set.seed(1)
```
# ggquadrilateral




`ggquadrilateral` provides a [ggplot2](https://ggplot2.tidyverse.org/index.html) geom that can draw
arbitrary quadrilaterals in a convenient way.

## Installation

You can install the latest version of ggquadrilateral from [GitHub](https://github.com/const-ae/ggquadrilateral) with:

```{r eval=FALSE}
devtools::install_github("const-ae/ggquadrilateral")
```

If you don't already have devtools installed, you can get it from CRAN with `install.packages("devtools")`.

## Example

First load `ggplot2` and the `ggquadrilateral` package

```{r example}
library(ggplot2)
library(ggquadrilateral)
```

The simplest example is to just define the positions of the four corners manually

```{r}
kite_df <- data.frame(
  left_tip_x = 2,
  left_tip_y = 7,
  top_tip_x = 3,
  top_tip_y = 8,
  right_tip_x = 4,
  right_tip_y = 7,
  bottom_tip_x = 3,
  bottom_tip_y = 3
)
kite_df
```

```{r}
ggplot(kite_df) +
  geom_quadrilateral(aes(x1=left_tip_x, y1 = left_tip_y,
                         x2 = top_tip_x, y2 = top_tip_y,
                         x3 = right_tip_x, y3 = right_tip_y,
                         x4 = bottom_tip_x, y4 = bottom_tip_y),
                     color = "black", fill = "purple", size=4) +
  xlim(-2, 8) + ylim(0, 10)
```


It can also be used to visualize more complex data.
We will now use it to draw the triangle mesh for
10 random points.

```{r}
df <- data.frame(x=rnorm(n=10, mean=0, sd=1),
                 y=rnorm(n=10, mean=0, sd=1))

ggplot(df, aes(x=x, y=y)) +
  geom_point()

```


We will use the [`tripack`](https://cran.r-project.org/web/packages/tripack/index.html) package
to calculate the Delauney triangulation.

```{r}
library(tripack)
triang <- as.data.frame(triangles(tri.mesh(df)))
triang_df <- data.frame(id = seq_len(nrow(triang)),
           p1x = df$x[triang$node1],
           p1y = df$y[triang$node1],
           p2x = df$x[triang$node2],
           p2y = df$y[triang$node2],
           p3x = df$x[triang$node3],
           p3y = df$y[triang$node3])
head(triang_df)
```

Using the `triang_df` that the coordinates for the 12 interpolating triangles we can make the plot:

```{r}
ggplot() +
  geom_quadrilateral(data=triang_df, 
                     mapping = aes(
                       x1 = p1x, y1 = p1y,
                       x2 = p2x, y2 = p2y,
                       x3 = p3x, y3 = p3y,
                       # We want triangles, so we make the
                       # fourth point identical to the third
                       x4 = p3x, y4 = p3y,
                       fill = as.factor(id)),
                     color = "black") +
  geom_point(data= df, aes(x=x, y=y), size = 3) 
```



Owner

  • Name: Constantin
  • Login: const-ae
  • Kind: user
  • Location: Heidelberg, Germany
  • Company: EMBL

PhD Student, Biostats, R

GitHub Events

Total
Last Year

Issues and Pull Requests

Last synced: 9 months ago

All Time
  • Total issues: 0
  • Total pull requests: 0
  • Average time to close issues: N/A
  • Average time to close pull requests: N/A
  • Total issue authors: 0
  • Total pull request authors: 0
  • Average comments per issue: 0
  • Average comments per pull request: 0
  • Merged pull requests: 0
  • Bot issues: 0
  • Bot pull requests: 0
Past Year
  • Issues: 0
  • Pull requests: 0
  • Average time to close issues: N/A
  • Average time to close pull requests: N/A
  • Issue authors: 0
  • Pull request authors: 0
  • Average comments per issue: 0
  • Average comments per pull request: 0
  • Merged pull requests: 0
  • Bot issues: 0
  • Bot pull requests: 0
Top Authors
Issue Authors
Pull Request Authors
Top Labels
Issue Labels
Pull Request Labels

Dependencies

DESCRIPTION cran
  • ggplot2 * imports
  • scales * imports
  • testthat >= 2.1.0 suggests
  • tripack * suggests