https://github.com/copyleftdev/algo-viz

algos for visual learners

https://github.com/copyleftdev/algo-viz

Science Score: 13.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
  • DOI references
  • Academic publication links
  • Academic email domains
  • Institutional organization owner
  • JOSS paper metadata
  • Scientific vocabulary similarity
    Low similarity (5.0%) to scientific vocabulary

Keywords

algorithms learning python viusal-data
Last synced: 5 months ago · JSON representation

Repository

algos for visual learners

Basic Info
  • Host: GitHub
  • Owner: copyleftdev
  • Default Branch: main
  • Homepage:
  • Size: 2.93 KB
Statistics
  • Stars: 0
  • Watchers: 1
  • Forks: 0
  • Open Issues: 0
  • Releases: 0
Topics
algorithms learning python viusal-data
Created over 1 year ago · Last pushed over 1 year ago
Metadata Files
Readme

README.md

Visual Guide to Algorithms

This guide provides advanced visual representations of ten fundamental algorithms using Mermaid charts. These visualizations combine algorithm flowcharts with relevant data structure representations to offer a more intuitive understanding for visual learners.

1. Sorting Algorithms (Quicksort)

```mermaid graph TD subgraph Algorithm A[Start] --> B["Choose pivot"] B --> C["Partition array"] C --> D{"Is subarray length > 1?"} D -->|Yes| E["Recursively sort left subarray"] D -->|Yes| F["Recursively sort right subarray"] E --> D F --> D D -->|No| G[End] end

subgraph Array
    H["5 | 2 | 9 | 1 | 7 | 6 | 3"]
    I["3 | 2 | 1 | 5 | 7 | 6 | 9"]
    J["1 | 2 | 3 | 5 | 6 | 7 | 9"]
end

H -.-> I
I -.-> J

style H fill:#f9f,stroke:#333,stroke-width:2px
style I fill:#bbf,stroke:#333,stroke-width:2px
style J fill:#bfb,stroke:#333,stroke-width:2px

```

2. Searching Algorithms (Binary Search)

```mermaid graph TD subgraph Algorithm A[Start] --> B["left = 0, right = len(arr) - 1"] B --> C{"left <= right?"} C -->|Yes| D["mid = (left + right) // 2"] D --> E{"arr[mid] == target?"} E -->|Yes| F["Return mid"] E -->|No| G{"arr[mid] < target?"} G -->|Yes| H["left = mid + 1"] G -->|No| I["right = mid - 1"] H --> C I --> C C -->|No| J["Target not found"] F --> K[End] J --> K end

subgraph Array
    L["1 | 3 | 4 | 6 | 8 | 9 | 11"]
end

style L fill:#bfb,stroke:#333,stroke-width:2px

```

3. Dynamic Programming (Fibonacci Sequence)

```mermaid graph TD subgraph Algorithm A[Start] --> B["Initialize dp array"] B --> C["Set base cases: dp[0] = 0, dp[1] = 1"] C --> D["For i from 2 to n:"] D --> E["dp[i] = dp[i-1] + dp[i-2]"] E --> D D --> F["Return dp[n]"] F --> G[End] end

subgraph DP Table
    H["0 | 1 | 1 | 2 | 3 | 5 | 8 | 13"]
end

style H fill:#bfb,stroke:#333,stroke-width:2px

```

4. Depth-First Search (DFS)

```mermaid graph TD subgraph Algorithm A[Start] --> B["Choose start node"] B --> C["Mark node as visited"] C --> D["For each unvisited neighbor:"] D --> E["Recursively apply DFS"] E --> D D --> F["Backtrack"] F --> G[End] end

subgraph Graph
    1((1)) --- 2((2))
    1 --- 3((3))
    2 --- 4((4))
    3 --- 4
    3 --- 5((5))
end

style 1 fill:#f9f,stroke:#333,stroke-width:4px
style 2 fill:#bbf,stroke:#333,stroke-width:2px
style 3 fill:#bbf,stroke:#333,stroke-width:2px
style 4 fill:#fff,stroke:#333,stroke-width:2px
style 5 fill:#fff,stroke:#333,stroke-width:2px

```

5. Breadth-First Search (BFS)

```mermaid graph TD subgraph Algorithm A[Start] --> B["queue = [start]
visited = set([start])"] B --> C{"queue empty?"} C -->|No| D["node = queue.pop(0)"] D --> E["Process node"] E --> F["Add unvisited neighbors
to queue and visited"] F --> C C -->|Yes| G[End] end

subgraph Graph
    1((1)) --- 2((2))
    1 --- 3((3))
    2 --- 4((4))
    3 --- 4
    3 --- 5((5))
end

style 1 fill:#f9f,stroke:#333,stroke-width:4px
style 2 fill:#bbf,stroke:#333,stroke-width:2px
style 3 fill:#bbf,stroke:#333,stroke-width:2px
style 4 fill:#fff,stroke:#333,stroke-width:2px
style 5 fill:#fff,stroke:#333,stroke-width:2px

```

6. Greedy Algorithms (Coin Change)

```mermaid graph TD subgraph Algorithm A[Start] --> B["Sort coins in descending order"] B --> C["For each coin:"] C --> D["Use as many as possible"] D --> E["Subtract from amount"] E --> C C --> F["Return total coins used"] F --> G[End] end

subgraph Coins
    H["25¢ | 10¢ | 5¢ | 1¢"]
end

style H fill:#bfb,stroke:#333,stroke-width:2px

```

7. Divide and Conquer (Merge Sort)

```mermaid graph TD subgraph Algorithm A[Start] --> B["If array length > 1:"] B -->|Yes| C["Divide array in half"] C --> D["Recursively sort left half"] C --> E["Recursively sort right half"] D --> F["Merge sorted halves"] E --> F F --> G[End] B -->|No| G end

subgraph Array
    H["5 | 2 | 9 | 1 | 7 | 6 | 3"]
    I["2 | 5 | 1 | 9 | 3 | 6 | 7"]
    J["1 | 2 | 3 | 5 | 6 | 7 | 9"]
end

H -.-> I
I -.-> J

style H fill:#f9f,stroke:#333,stroke-width:2px
style I fill:#bbf,stroke:#333,stroke-width:2px
style J fill:#bfb,stroke:#333,stroke-width:2px

```

8. Recursion (Factorial)

```mermaid graph TD subgraph Algorithm A[Start] --> B{"n == 0 or n == 1?"} B -->|Yes| C["Return 1"] B -->|No| D["Return n * factorial(n-1)"] C --> E[End] D --> E end

subgraph Call Stack
    F["factorial(4)"]
    G["factorial(3)"]
    H["factorial(2)"]
    I["factorial(1)"]
end

F -.-> G
G -.-> H
H -.-> I

style F fill:#f9f,stroke:#333,stroke-width:2px
style G fill:#bbf,stroke:#333,stroke-width:2px
style H fill:#bfb,stroke:#333,stroke-width:2px
style I fill:#fbf,stroke:#333,stroke-width:2px

```

9. Two-Pointer Technique (String Reversal)

```mermaid graph TD subgraph Algorithm A[Start] --> B["left = 0, right = len(s) - 1"] B --> C{"left < right?"} C -->|Yes| D["Swap s[left] and s[right]"] D --> E["left++, right--"] E --> C C -->|No| F["Return reversed string"] F --> G[End] end

subgraph String
    H["H | E | L | L | O"]
    I["O | E | L | L | H"]
end

H -.-> I

style H fill:#f9f,stroke:#333,stroke-width:2px
style I fill:#bfb,stroke:#333,stroke-width:2px

```

10. Sliding Window (Max Sum Subarray)

```mermaid graph TD subgraph Algorithm A[Start] --> B["Initialize window sum"] B --> C["For each window:"] C --> D["Add next element"] D --> E["Subtract first element"] E --> F["Update max sum if needed"] F --> C C --> G["Return max sum"] G --> H[End] end

subgraph Array
    I["1 | 4 | 2 | 10 | 23 | 3 | 1 | 0 | 20"]
    J["Window 1"]
    K["Window 2"]
    L["Window 3"]
end

I -.-> J
I -.-> K
I -.-> L

style I fill:#bfb,stroke:#333,stroke-width:2px
style J fill:#f9f,stroke:#333,stroke-width:2px
style K fill:#bbf,stroke:#333,stroke-width:2px
style L fill:#fbf,stroke:#333,stroke-width:2px

```

Owner

  • Name: Donald Johnson
  • Login: copyleftdev
  • Kind: user
  • Location: Los Angeles

GitHub Events

Total
  • Watch event: 1
Last Year
  • Watch event: 1

Issues and Pull Requests

Last synced: 12 months ago

All Time
  • Total issues: 0
  • Total pull requests: 0
  • Average time to close issues: N/A
  • Average time to close pull requests: N/A
  • Total issue authors: 0
  • Total pull request authors: 0
  • Average comments per issue: 0
  • Average comments per pull request: 0
  • Merged pull requests: 0
  • Bot issues: 0
  • Bot pull requests: 0
Past Year
  • Issues: 0
  • Pull requests: 0
  • Average time to close issues: N/A
  • Average time to close pull requests: N/A
  • Issue authors: 0
  • Pull request authors: 0
  • Average comments per issue: 0
  • Average comments per pull request: 0
  • Merged pull requests: 0
  • Bot issues: 0
  • Bot pull requests: 0
Top Authors
Issue Authors
Pull Request Authors
Top Labels
Issue Labels
Pull Request Labels