ivadomed

ivadomed: A Medical Imaging Deep Learning Toolbox - Published in JOSS (2021)

https://github.com/ivadomed/ivadomed

Science Score: 95.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
    Found .zenodo.json file
  • DOI references
    Found 4 DOI reference(s) in README and JOSS metadata
  • Academic publication links
    Links to: joss.theoj.org
  • Committers with academic emails
    1 of 35 committers (2.9%) from academic institutions
  • Institutional organization owner
  • JOSS paper metadata
    Published in Journal of Open Source Software

Keywords from Contributors

mri data-simulation magnetic-resonance-imaging magnetization qmri quantitative quantitative-mri relaxometry mesh

Scientific Fields

Mathematics Computer Science - 84% confidence
Artificial Intelligence and Machine Learning Computer Science - 83% confidence
Last synced: 4 months ago · JSON representation

Repository

Repository on the collaborative IVADO medical imaging project between the Mila and NeuroPoly labs.

Basic Info
  • Host: GitHub
  • Owner: ivadomed
  • License: mit
  • Language: Python
  • Default Branch: master
  • Homepage: https://ivadomed.org
  • Size: 134 MB
Statistics
  • Stars: 163
  • Watchers: 10
  • Forks: 147
  • Open Issues: 302
  • Releases: 34
Created almost 8 years ago · Last pushed 8 months ago
Metadata Files
Readme Changelog Contributing Funding License Code of conduct

README.md

[!WARNING]
ivadomed is no more maintained. New models integrated in our 3rd party software (SCT, AxonDeepSeg, etc.) are now trained using MONAI and/or nnUnet.

ivadomed Overview

DOI Coverage Status test status publish package Documentation Status License: MIT Twitter Follow

ivadomed is an integrated framework for medical image analysis with deep learning.

The technical documentation is available here. The more detailed installation instruction is available there

Installation

ivadomed requires Python >= 3.7 and < 3.10 as well as PyTorch == 1.8. We recommend working under a virtual environment, which could be set as follows:

bash python -m venv ivadomed_env source ivadomed_env/bin/activate

Install from release (recommended)

Install ivadomed and its requirements from Pypi <https://pypi.org/project/ivadomed/>__:

bash pip install --upgrade pip pip install ivadomed

Install from source

Bleeding-edge developments builds are available on the project's master branch on Github. Installation procedure is the following:

bash git clone https://github.com/neuropoly/ivadomed.git cd ivadomed pip install -e .

Contributors

This project results from a collaboration between the NeuroPoly Lab and the Mila. The main funding source is IVADO.

List of contributors

Consult our Wiki(https://github.com/ivadomed/ivadomed/wiki) here for more help

Owner

  • Name: ivadomed
  • Login: ivadomed
  • Kind: organization
  • Location: Canada

Integrated framework for medical image analysis with deep learning.

JOSS Publication

ivadomed: A Medical Imaging Deep Learning Toolbox
Published
February 12, 2021
Volume 6, Issue 58, Page 2868
Authors
Charley Gros ORCID
NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, Canada, Mila, Quebec AI Institute, Montreal, QC, Canada
Andreanne Lemay ORCID
NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, Canada, Mila, Quebec AI Institute, Montreal, QC, Canada
Olivier Vincent ORCID
NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, Canada, Mila, Quebec AI Institute, Montreal, QC, Canada
Lucas Rouhier
NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, Canada
Marie-Helene Bourget ORCID
NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, Canada
Anthime Bucquet
NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, Canada
Joseph Paul Cohen
Mila, Quebec AI Institute, Montreal, QC, Canada, AIMI, Stanford University, Stanford, CA, USA
Julien Cohen-Adad ORCID
NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, Canada, Mila, Quebec AI Institute, Montreal, QC, Canada, Functional Neuroimaging Unit, CRIUGM, Université de Montréal, Montreal, QC, Canada
Editor
Christopher R. Madan ORCID
Tags
Deep Learning Medical Imaging Segmentation Open-source Pipeline

GitHub Events

Total
  • Issues event: 5
  • Watch event: 8
  • Issue comment event: 65
  • Push event: 6
  • Pull request review comment event: 1
  • Pull request event: 5
  • Gollum event: 1
Last Year
  • Issues event: 5
  • Watch event: 8
  • Issue comment event: 65
  • Push event: 6
  • Pull request review comment event: 1
  • Pull request event: 5
  • Gollum event: 1

Committers

Last synced: 5 months ago

All Time
  • Total Commits: 3,586
  • Total Committers: 35
  • Avg Commits per committer: 102.457
  • Development Distribution Score (DDS): 0.511
Past Year
  • Commits: 2
  • Committers: 2
  • Avg Commits per committer: 1.0
  • Development Distribution Score (DDS): 0.5
Top Committers
Name Email Commits
charleygros c****s@g****m 1,752
andreanne-lemay a****y@p****a 676
Julien Cohen-Adad j****n@p****a 239
lrouhier l****r@t****r 223
olivier o****h@h****m 210
AnBucquet b****t@e****r 104
cakester h****a@m****m 67
mariehbourget 5****t 57
ValentineLL v****l@e****a 36
Yang Ding y****g@m****m 31
Alexandru Jora a****u@j****a 26
Ainsleigh Hill a****l@g****m 25
Nick n****r@p****a 21
Christian S. Perone c****e@g****m 17
Giselle Martel 3****l 12
Yuan Wang 3****n 12
BUCQUET Anthime 3****t 11
Joshua Newton j****n@g****m 11
Kanishk Kalra 3****6 9
Uzay Macar u****r@g****m 8
Srishti s****7@g****m 6
Olivier Vincent o****n@p****a 6
Mathieu Boudreau, PhD e****0@g****m 5
Konstantinos k****s@h****m 4
Naga Karthik 5****k 4
bsauty 4****y 3
Alexandru Foias a****s 3
Enoch Tetteh c****h@g****m 1
Fernando França f****f@a****r 1
Jeff n****o@g****m 1
and 5 more...

Issues and Pull Requests

Last synced: 4 months ago

All Time
  • Total issues: 63
  • Total pull requests: 174
  • Average time to close issues: about 1 month
  • Average time to close pull requests: 2 months
  • Total issue authors: 13
  • Total pull request authors: 26
  • Average comments per issue: 3.33
  • Average comments per pull request: 3.4
  • Merged pull requests: 145
  • Bot issues: 0
  • Bot pull requests: 0
Past Year
  • Issues: 2
  • Pull requests: 1
  • Average time to close issues: about 9 hours
  • Average time to close pull requests: N/A
  • Issue authors: 2
  • Pull request authors: 1
  • Average comments per issue: 0.5
  • Average comments per pull request: 2.0
  • Merged pull requests: 0
  • Bot issues: 0
  • Bot pull requests: 0
Top Authors
Issue Authors
  • jcohenadad (41)
  • naga-karthik (4)
  • joshuacwnewton (4)
  • mathieuboudreau (3)
  • mariehbourget (2)
  • uzaymacar (2)
  • hermancollin (2)
  • kiristern (2)
  • taimast (1)
  • dbsi-pinkman (1)
  • zwb0 (1)
  • chennyyuee (1)
Pull Request Authors
  • andreanne-lemay (34)
  • mariehbourget (18)
  • ahill187 (16)
  • jcohenadad (15)
  • cakester (15)
  • joshuacwnewton (14)
  • charleygros (13)
  • kanishk16 (8)
  • mathieuboudreau (8)
  • lrouhier (6)
  • kaidalisohaib (5)
  • gisellemartel (5)
  • kousu (4)
  • mpompolas (3)
  • konantian (2)
Top Labels
Issue Labels
documentation (11) card:DESIGN_DISCUSSION (6) bug (6) feature (5) wandb (4) enhancement (3) priority:high (3) refactoring (1) help wanted (1) question (1) Good intership project (1)
Pull Request Labels
documentation (39) enhancement (33) bug (29) refactoring (25) feature (14) testing (7) installation (7) CI (6) maintenance (6) deep learning (5) priority:medium (4) dependencies (4) Ready for review (4) priority:high (4) card:DESIGN_DISCUSSION (2) draft (2) ivadomed (1) imaging (1) wandb (1) architecture (1)

Dependencies

requirements.txt pypi
  • csv-diff >=1.0
  • joblib *
  • loguru *
  • matplotlib >=3.3.0
  • nibabel *
  • onnxruntime ==1.7.0
  • pandas *
  • pillow >=7.0.0
  • pybids >=0.14.0
  • pyparsing <3,>=2.0.2
  • scikit-image *
  • scikit-learn >=0.20.3
  • scipy *
  • seaborn *
  • tensorboard >=1.15.0
  • torch *
  • torchio >=0.18.68
  • torchvision *
  • tqdm >=4.30
  • wandb >=0.12.11
.github/workflows/pre-commit.yml actions
  • actions/cache v3 composite
  • actions/checkout v3 composite
  • actions/setup-python v3 composite
.github/workflows/publish_package.yml actions
  • actions/checkout v3 composite
  • actions/setup-python v3 composite
  • pypa/gh-action-pypi-publish release/v1 composite
  • softprops/action-gh-release v1 composite
.github/workflows/run_tests.yml actions
  • actions/checkout v3 composite
  • actions/setup-python v3 composite
.github/workflows/run_tests_dummy.yml actions
setup.py pypi
environment.yml conda
  • pip
  • python >=3.7,<3.9