radtts-uk

High-fidelity speech synthesis for Ukrainian using modern neural networks.

https://github.com/egorsmkv/tts_uk

Science Score: 67.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
    Found CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
    Found .zenodo.json file
  • DOI references
    Found 3 DOI reference(s) in README
  • Academic publication links
    Links to: zenodo.org
  • Academic email domains
  • Institutional organization owner
  • JOSS paper metadata
  • Scientific vocabulary similarity
    Low similarity (15.4%) to scientific vocabulary

Keywords

audio sound speech-uk synthesis text-to-speech tts ukrainian vocos wav wave
Last synced: 6 months ago · JSON representation ·

Repository

High-fidelity speech synthesis for Ukrainian using modern neural networks.

Basic Info
Statistics
  • Stars: 8
  • Watchers: 1
  • Forks: 0
  • Open Issues: 5
  • Releases: 7
Topics
audio sound speech-uk synthesis text-to-speech tts ukrainian vocos wav wave
Created 12 months ago · Last pushed 6 months ago
Metadata Files
Readme Funding Citation

README.md

tts_uk

Text-to-Speech for Ukrainian

PyPI Version License MIT PyPI Downloads DOI FOSSA Status

High-fidelity speech synthesis for Ukrainian using modern neural networks.

Statuses

CI Pipeline Dependabot Updates Snyk Security

Demo

HF Space Google Colab

Check out our demo on Hugging Face space or just listen to samples here.

Features

  • Multi-speaker model: 2 female (Tetiana, Lada) + 1 male (Mykyta) voices;
  • Fine-grained control over speech parameters, including duration, fundamental frequency (F0), and energy;
  • High-fidelity speech generation using the RAD-TTS++ acoustic model;
  • Fast vocoding using Vocos;
  • Synthesizes long sentences effectively;
  • Supports a sampling rate of 44.1 kHz;
  • Tested on Linux environments and Windows/WSL;
  • Python API (requires Python 3.9 or later);
  • CUDA-enabled for GPU acceleration.

Installation

```shell

Install from PyPI

pip install tts-uk

OR, for the latest development version:

pip install git+https://github.com/egorsmkv/tts_uk

OR, use git and local setup

git clone https://github.com/egorsmkv/ttsuk cd ttsuk uv sync # uv will handle the virtual environment ```

Read uv's installation section.

Also, you can download the repository as a ZIP archive.

Getting started

Code example:

```python import torchaudio

from tts_uk.inference import synthesis

samplingrate = 44100

Perform the synthesis, synthesis function returns:

- mels: Mel spectrograms of the generated audio.

- wave: The synthesized waveform by a Vocoder as a PyTorch tensor.

- stats: A dictionary containing synthesis statistics (processing time, duration, speech rate, etc).

mels, wave, stats = synthesis( text="Ви можете протестувати синтез мовлення українською мовою. Просто введіть текст, який ви хочете прослухати.", voice="tetiana", # tetiana, mykyta, lada ntakes=1, uselatesttake=False, tokendurscaling=1, f0mean=0, f0std=0, energymean=0, energystd=0, sigmadecoder=0.8, sigmatokenduration=0.666, sigmaf0=1, sigmaenergy=1, )

print(stats)

Save the generated audio to a WAV file.

torchaudio.save("audio.wav", wave.cpu(), samplingrate, encoding="PCMS") ```

Use these Google colabs:

Or run synthesis in a terminal:

shell uv run example.py

If you need to synthesize articles we recommend consider wtpsplit.

Get help and support

Please feel free to connect with us using the Issues section.

License

Code has the MIT license.

Model authors

Acoustic

Vocoder

Community

Discord

  • Discord: https://bit.ly/discord-uds
  • Speech Recognition: https://t.me/speechrecognitionuk
  • Speech Synthesis: https://t.me/speechsynthesisuk

Also, follow our Speech-UK initiative on Hugging Face!

Acknowledgements

Owner

  • Name: Yehor Smoliakov
  • Login: egorsmkv
  • Kind: user
  • Location: 50.4501° N, 30.5234° E

Speech-to-Text, Text-to-Speech, Voice over Internet Protocol

Citation (CITATION.cff)

cff-version: 1.2.0
message: "If you use this software, please cite it as below."
authors:
- family-names: "Smoliakov"
  given-names: "Yehor"
  orcid: "https://orcid.org/0000-0002-8272-2095"
title: "High-fidelity speech synthesis for Ukrainian using modern neural networks."
version: 1.3.5
doi: 10.5281/zenodo.14966501
date-released: 2025-03-04
url: "https://github.com/egorsmkv/tts_uk"

GitHub Events

Total
  • Create event: 11
  • Release event: 7
  • Issues event: 19
  • Watch event: 8
  • Delete event: 3
  • Issue comment event: 1
  • Push event: 89
  • Pull request event: 2
Last Year
  • Create event: 11
  • Release event: 7
  • Issues event: 19
  • Watch event: 8
  • Delete event: 3
  • Issue comment event: 1
  • Push event: 89
  • Pull request event: 2

Issues and Pull Requests

Last synced: 6 months ago

All Time
  • Total issues: 13
  • Total pull requests: 1
  • Average time to close issues: about 14 hours
  • Average time to close pull requests: about 6 hours
  • Total issue authors: 1
  • Total pull request authors: 1
  • Average comments per issue: 0.08
  • Average comments per pull request: 0.0
  • Merged pull requests: 1
  • Bot issues: 0
  • Bot pull requests: 1
Past Year
  • Issues: 13
  • Pull requests: 1
  • Average time to close issues: about 14 hours
  • Average time to close pull requests: about 6 hours
  • Issue authors: 1
  • Pull request authors: 1
  • Average comments per issue: 0.08
  • Average comments per pull request: 0.0
  • Merged pull requests: 1
  • Bot issues: 0
  • Bot pull requests: 1
Top Authors
Issue Authors
  • egorsmkv (15)
Pull Request Authors
  • dependabot[bot] (2)
Top Labels
Issue Labels
Pull Request Labels
dependencies (2) github_actions (2)

Packages

  • Total packages: 2
  • Total downloads:
    • pypi 84 last-month
  • Total dependent packages: 0
    (may contain duplicates)
  • Total dependent repositories: 0
    (may contain duplicates)
  • Total versions: 11
  • Total maintainers: 1
pypi.org: radtts-uk

RAD-TTS++ for Ukrainian

  • Versions: 1
  • Dependent Packages: 0
  • Dependent Repositories: 0
Rankings
Dependent packages count: 9.5%
Average: 31.7%
Dependent repos count: 53.8%
Last synced: 12 months ago
pypi.org: tts-uk

High-fidelity speech synthesis for Ukrainian using modern neural networks.

  • Versions: 10
  • Dependent Packages: 0
  • Dependent Repositories: 0
  • Downloads: 84 Last month
Rankings
Dependent packages count: 9.5%
Average: 31.7%
Dependent repos count: 53.8%
Maintainers (1)
Last synced: 6 months ago

Dependencies

pyproject.toml pypi
  • huggingface_hub >=0.29.1
  • librosa >=0.10.2.post1
  • numba >=0.60
  • scipy >=1
  • torch >=2.2.0
  • torchaudio >=2.2.0
  • vocos @ git+https://github.com/langtech-bsc/vocos.git@matcha
uv.lock pypi
  • audioread 3.0.1
  • certifi 2025.1.31
  • cffi 1.17.1
  • charset-normalizer 3.4.1
  • colorama 0.4.6
  • decorator 5.2.1
  • einops 0.8.1
  • encodec 0.1.1
  • filelock 3.17.0
  • fsspec 2025.2.0
  • huggingface-hub 0.29.1
  • idna 3.10
  • jinja2 3.1.5
  • joblib 1.4.2
  • lazy-loader 0.4
  • librosa 0.10.2.post1
  • llvmlite 0.43.0
  • llvmlite 0.44.0
  • markupsafe 3.0.2
  • mpmath 1.3.0
  • msgpack 1.1.0
  • networkx 3.2.1
  • networkx 3.4.2
  • numba 0.60.0
  • numba 0.61.0
  • numpy 2.0.2
  • numpy 2.1.3
  • nvidia-cublas-cu12 12.4.5.8
  • nvidia-cuda-cupti-cu12 12.4.127
  • nvidia-cuda-nvrtc-cu12 12.4.127
  • nvidia-cuda-runtime-cu12 12.4.127
  • nvidia-cudnn-cu12 9.1.0.70
  • nvidia-cufft-cu12 11.2.1.3
  • nvidia-curand-cu12 10.3.5.147
  • nvidia-cusolver-cu12 11.6.1.9
  • nvidia-cusparse-cu12 12.3.1.170
  • nvidia-cusparselt-cu12 0.6.2
  • nvidia-nccl-cu12 2.21.5
  • nvidia-nvjitlink-cu12 12.4.127
  • nvidia-nvtx-cu12 12.4.127
  • packaging 24.2
  • platformdirs 4.3.6
  • pooch 1.8.2
  • pycparser 2.22
  • pyyaml 6.0.2
  • radtts-uk 1.0.0
  • requests 2.32.3
  • ruff 0.9.9
  • scikit-learn 1.6.1
  • scipy 1.13.1
  • scipy 1.15.2
  • setuptools 75.8.2
  • soundfile 0.13.1
  • soxr 0.5.0.post1
  • sympy 1.13.1
  • threadpoolctl 3.5.0
  • torch 2.6.0
  • torchaudio 2.6.0
  • tqdm 4.67.1
  • triton 3.2.0
  • typing-extensions 4.12.2
  • urllib3 2.3.0
  • vocos 0.1.0