https://github.com/danymukesha/pca-pwa
simplified manner for insights and decision-making by visualizing complex relationships with PCA web application
Science Score: 13.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
○CITATION.cff file
-
✓codemeta.json file
Found codemeta.json file -
○.zenodo.json file
-
○DOI references
-
○Academic publication links
-
○Academic email domains
-
○Institutional organization owner
-
○JOSS paper metadata
-
○Scientific vocabulary similarity
Low similarity (13.6%) to scientific vocabulary
Keywords
Repository
simplified manner for insights and decision-making by visualizing complex relationships with PCA web application
Basic Info
- Host: GitHub
- Owner: danymukesha
- License: mit
- Language: Python
- Default Branch: main
- Homepage: https://pypi.org/project/pca-pwa/
- Size: 201 KB
Statistics
- Stars: 0
- Watchers: 1
- Forks: 0
- Open Issues: 0
- Releases: 1
Topics
Metadata Files
README.md
pca-pwa
pca-pwa, a simplified manner for insights and decision-making by visualizing complex relationships with PCA web application.
The Purpose of the Package
- The purpose of the package is to offer a simple way of visualizing relatationships between items of any given dataset. The user could easily obtain a pca plot without needing to configure or compile the application.
Installation
To install pca_pwa, you can use pip. Open your terminal and run:
sh
pip install pca_pwa
Open IPython or Jupyter Notebook
```python
from pcapwa import app app.app.run(debug=True, usereloader=True, host='0.0.0.0', port=8082)
* Serving Flask app 'app'
* Debug mode: on
* Running on http://127.0.0.1:8082
```
Open the url: http://127.0.0.1:8082
Upload xslx/slx file (Excel)
e.g.:
- Click here to download the excel file
- Items/Observations should be in rows
Variables/Features should in columns
- Standard Data (table) Format
The example of standard data format to be used while uploading to pca-pwa web app is a dataframe from sample names in the first column, and the rest (e.g.: metabolites, genes, RNA, etc.) for each sample in the following columns (see Table 1).
Table 1: Standard data table format.
| Sample | Met 1 | Met 2 | Met 3 | ... | Met N | |--------|---------|---------|---------|---------|---------| | S1 | 99,380 | 10.177 | 51.484 | ... | 71.882 | | S2 | 101.195 | 10.786 | 50.446 | ... | 73.318 | | S3 | 102.165 | 9,375 | 49.668 | ... | 72,056 | | S4 | 99.481 | 8.291 | 48.111 | ... | 73.282 | | S5 | 101.282 | 10.867 | 50.209 | ... | 73,572 | | S6 | 99.43 | 9.95 | 47.602 | ... | 71,983 |
Choose a method of imputation for missing values.
Then run the pca by clicking Perform PCA button.
Otherwise you can use git clone:
Here is the Usage:
Clone the github repository
git
git clone https://github.com/danymukesha/pca-pwa.git
Run the app
```sh cd pca-pwa python3.1 pca-pwa/app.y
* Serving Flask app 'app'
* Debug mode: on
* Running on http://127.0.0.1:8082
```
Open the url: http://127.0.0.1:8082
License
This project is licensed under the MIT License.
Credits
Author: MIT © Dany Mukesha
Email: danymukesha@gmail.com
Thank you for using pca_pwa!
Owner
- Name: Dany Mukesha
- Login: danymukesha
- Kind: user
- Location: Rome, Italy
- Website: danymukesha.github.io
- Repositories: 1
- Profile: https://github.com/danymukesha
GitHub Events
Total
Last Year
Issues and Pull Requests
Last synced: 8 months ago
All Time
- Total issues: 0
- Total pull requests: 0
- Average time to close issues: N/A
- Average time to close pull requests: N/A
- Total issue authors: 0
- Total pull request authors: 0
- Average comments per issue: 0
- Average comments per pull request: 0
- Merged pull requests: 0
- Bot issues: 0
- Bot pull requests: 0
Past Year
- Issues: 0
- Pull requests: 0
- Average time to close issues: N/A
- Average time to close pull requests: N/A
- Issue authors: 0
- Pull request authors: 0
- Average comments per issue: 0
- Average comments per pull request: 0
- Merged pull requests: 0
- Bot issues: 0
- Bot pull requests: 0
Top Authors
Issue Authors
Pull Request Authors
Top Labels
Issue Labels
Pull Request Labels
Dependencies
- adjusttext 1.0
- bioframe 0.6.0
- blinker 1.7.0
- certifi 2023.11.17
- charset-normalizer 3.3.2
- click 8.1.7
- colorama 0.4.6
- contourpy 1.2.0
- cycler 0.12.1
- et-xmlfile 1.1.0
- flask 3.0.0
- fonttools 4.47.0
- idna 3.6
- itsdangerous 2.1.2
- jinja2 3.1.2
- joblib 1.3.2
- kiwisolver 1.4.5
- markupsafe 2.1.3
- matplotlib 3.8.2
- numpy 1.26.3
- openpyxl 3.1.2
- packaging 23.2
- pandas 2.1.4
- pillow 10.2.0
- pyparsing 3.1.1
- python-dateutil 2.8.2
- pytz 2023.3.post1
- pyyaml 6.0.1
- requests 2.31.0
- scikit-learn 1.3.2
- scipy 1.11.4
- seaborn 0.13.1
- six 1.16.0
- threadpoolctl 3.2.0
- tzdata 2023.4
- urllib3 2.1.0
- werkzeug 3.0.1
- adjusttext ^1.0
- flask ^3.0.0
- matplotlib ^3.8.2
- openpyxl ^3.1.2
- pandas ^2.1.4
- python ^3.11
- scikit-learn ^1.3.2
- seaborn ^0.13.1
- actions/checkout v2 composite
- actions/setup-python v2 composite
- actions/upload-release-asset v1 composite
- actions/setup-python v2 composite
- actions/checkout v2 composite
- actions/setup-python v2 composite
- code-specialist/pypi-poetry-publish v1 composite
- actions/checkout v4 composite
- actions/setup-node v3 composite
- actions/checkout v2 composite
- actions/setup-python v2 composite
- Flask ==2.0.1
- adjustText ==0.7.3
- matplotlib ==3.4.2
- numpy ==1.20.3
- pandas ==1.2.4
- scikit-learn ==0.24.2
- scipy ==1.6.3
- seaborn ==0.11.1
- Flask *
- adjustText *
- matplotlib *
- numpy *
- pandas *
- scikit-learn *
- scipy *
- seaborn *