https://github.com/danymukesha/pca-pwa

simplified manner for insights and decision-making by visualizing complex relationships with PCA web application

https://github.com/danymukesha/pca-pwa

Science Score: 13.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
  • DOI references
  • Academic publication links
  • Academic email domains
  • Institutional organization owner
  • JOSS paper metadata
  • Scientific vocabulary similarity
    Low similarity (13.6%) to scientific vocabulary

Keywords

pca statistics unsupervised-learning
Last synced: 5 months ago · JSON representation

Repository

simplified manner for insights and decision-making by visualizing complex relationships with PCA web application

Basic Info
Statistics
  • Stars: 0
  • Watchers: 1
  • Forks: 0
  • Open Issues: 0
  • Releases: 1
Topics
pca statistics unsupervised-learning
Created about 2 years ago · Last pushed about 2 years ago
Metadata Files
Readme License

README.md

pca-pwa

Python Tests

pca-pwa, a simplified manner for insights and decision-making by visualizing complex relationships with PCA web application.

The Purpose of the Package

  • The purpose of the package is to offer a simple way of visualizing relatationships between items of any given dataset. The user could easily obtain a pca plot without needing to configure or compile the application.

Installation

To install pca_pwa, you can use pip. Open your terminal and run:

sh pip install pca_pwa Open IPython or Jupyter Notebook ```python

from pcapwa import app app.app.run(debug=True, usereloader=True, host='0.0.0.0', port=8082)

* Serving Flask app 'app'

* Debug mode: on

* Running on http://127.0.0.1:8082

```

Open the url: http://127.0.0.1:8082

image

Upload xslx/slx file (Excel)

  • e.g.:

    • Click here to download the excel file
    • Items/Observations should be in rows
    • Variables/Features should in columns

      • Standard Data (table) Format

      The example of standard data format to be used while uploading to pca-pwa web app is a dataframe from sample names in the first column, and the rest (e.g.: metabolites, genes, RNA, etc.) for each sample in the following columns (see Table 1).

      Table 1: Standard data table format.

      | Sample | Met 1 | Met 2 | Met 3 | ... | Met N | |--------|---------|---------|---------|---------|---------| | S1 | 99,380 | 10.177 | 51.484 | ... | 71.882 | | S2 | 101.195 | 10.786 | 50.446 | ... | 73.318 | | S3 | 102.165 | 9,375 | 49.668 | ... | 72,056 | | S4 | 99.481 | 8.291 | 48.111 | ... | 73.282 | | S5 | 101.282 | 10.867 | 50.209 | ... | 73,572 | | S6 | 99.43 | 9.95 | 47.602 | ... | 71,983 |

Choose a method of imputation for missing values.

Then run the pca by clicking Perform PCA button.

image


Otherwise you can use git clone:

Here is the Usage:

Clone the github repository

git git clone https://github.com/danymukesha/pca-pwa.git

Run the app

```sh cd pca-pwa python3.1 pca-pwa/app.y

* Serving Flask app 'app'

* Debug mode: on

* Running on http://127.0.0.1:8082

```

Open the url: http://127.0.0.1:8082

License

This project is licensed under the MIT License.

Credits

Author: MIT © Dany Mukesha

Email: danymukesha@gmail.com

Thank you for using pca_pwa!

Owner

  • Name: Dany Mukesha
  • Login: danymukesha
  • Kind: user
  • Location: Rome, Italy

GitHub Events

Total
Last Year

Issues and Pull Requests

Last synced: 8 months ago

All Time
  • Total issues: 0
  • Total pull requests: 0
  • Average time to close issues: N/A
  • Average time to close pull requests: N/A
  • Total issue authors: 0
  • Total pull request authors: 0
  • Average comments per issue: 0
  • Average comments per pull request: 0
  • Merged pull requests: 0
  • Bot issues: 0
  • Bot pull requests: 0
Past Year
  • Issues: 0
  • Pull requests: 0
  • Average time to close issues: N/A
  • Average time to close pull requests: N/A
  • Issue authors: 0
  • Pull request authors: 0
  • Average comments per issue: 0
  • Average comments per pull request: 0
  • Merged pull requests: 0
  • Bot issues: 0
  • Bot pull requests: 0
Top Authors
Issue Authors
Pull Request Authors
Top Labels
Issue Labels
Pull Request Labels

Dependencies

poetry.lock pypi
  • adjusttext 1.0
  • bioframe 0.6.0
  • blinker 1.7.0
  • certifi 2023.11.17
  • charset-normalizer 3.3.2
  • click 8.1.7
  • colorama 0.4.6
  • contourpy 1.2.0
  • cycler 0.12.1
  • et-xmlfile 1.1.0
  • flask 3.0.0
  • fonttools 4.47.0
  • idna 3.6
  • itsdangerous 2.1.2
  • jinja2 3.1.2
  • joblib 1.3.2
  • kiwisolver 1.4.5
  • markupsafe 2.1.3
  • matplotlib 3.8.2
  • numpy 1.26.3
  • openpyxl 3.1.2
  • packaging 23.2
  • pandas 2.1.4
  • pillow 10.2.0
  • pyparsing 3.1.1
  • python-dateutil 2.8.2
  • pytz 2023.3.post1
  • pyyaml 6.0.1
  • requests 2.31.0
  • scikit-learn 1.3.2
  • scipy 1.11.4
  • seaborn 0.13.1
  • six 1.16.0
  • threadpoolctl 3.2.0
  • tzdata 2023.4
  • urllib3 2.1.0
  • werkzeug 3.0.1
pyproject.toml pypi
  • adjusttext ^1.0
  • flask ^3.0.0
  • matplotlib ^3.8.2
  • openpyxl ^3.1.2
  • pandas ^2.1.4
  • python ^3.11
  • scikit-learn ^1.3.2
  • seaborn ^0.13.1
.github/workflows/build.yml actions
  • actions/checkout v2 composite
  • actions/setup-python v2 composite
  • actions/upload-release-asset v1 composite
.github/workflows/main.yml actions
  • actions/setup-python v2 composite
.github/workflows/publish.yml actions
  • actions/checkout v2 composite
  • actions/setup-python v2 composite
.github/workflows/python-publish.yml actions
  • code-specialist/pypi-poetry-publish v1 composite
.github/workflows/release-package.yml actions
  • actions/checkout v4 composite
  • actions/setup-node v3 composite
.github/workflows/release.yml actions
  • actions/checkout v2 composite
  • actions/setup-python v2 composite
package-lock.json npm
package.json npm
requirements.txt pypi
  • Flask ==2.0.1
  • adjustText ==0.7.3
  • matplotlib ==3.4.2
  • numpy ==1.20.3
  • pandas ==1.2.4
  • scikit-learn ==0.24.2
  • scipy ==1.6.3
  • seaborn ==0.11.1
setup.py pypi
  • Flask *
  • adjustText *
  • matplotlib *
  • numpy *
  • pandas *
  • scikit-learn *
  • scipy *
  • seaborn *