https://github.com/darkstarstrix/nexa_inference
A inference application to serve Scientific Models
Science Score: 26.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
○CITATION.cff file
-
✓codemeta.json file
Found codemeta.json file -
✓.zenodo.json file
Found .zenodo.json file -
○DOI references
-
○Academic publication links
-
○Academic email domains
-
○Institutional organization owner
-
○JOSS paper metadata
-
○Scientific vocabulary similarity
Low similarity (10.8%) to scientific vocabulary
Keywords
Repository
A inference application to serve Scientific Models
Basic Info
- Host: GitHub
- Owner: DarkStarStrix
- License: other
- Language: Python
- Default Branch: master
- Homepage: https://darkstarstrix.github.io/Nexa_Inference/
- Size: 40.4 MB
Statistics
- Stars: 8
- Watchers: 1
- Forks: 0
- Open Issues: 0
- Releases: 0
Topics
Metadata Files
README.md
Nexa_Inference
Nexa_Inference is a unified platform for scientific machine learning, providing the newest Nexa models for predictions in biology (protein structure), astrophysics (stellar properties), and material science (material properties). Access these models via a simple REST API, with results returned in JSON format including predictions and confidence scores (0-100%).
Quick Start
Prerequisites
- Python 3.9+
- An API key (still in dev coming soon)
requestslibrary (pip install requests)
Example: Protein Structure Prediction
Predict the secondary structure of a protein sequence: ```python import requests
response = requests.post( "https://api.Nexainference.com/v1/bio/predict", headers={"X-API-Key": "yourapi_key"}, json={"sequence": "MAKQVKL"} )
result = response.json() print(result)
Output: {"prediction": "H", "confidence": 80.56}
```
Example: Stellar Property Prediction
Estimate a star's mass: ```python response = requests.post( "https://api.Nexainference.com/v1/astro/predict", headers={"X-API-Key": "yourapi_key"}, json={ "temp": 5778, # Kelvin "luminosity": 1.0, # Solar luminosity "metallicity": 0.0 # [Fe/H] } )
result = response.json() print(f"Stellar Mass: {result['prediction']} Solar masses") print(f"Confidence: {result['confidence']}%")
Output: {"prediction": 1.0, "confidence": 97.49}
```
Example: Material Property Prediction
Predict a material's band gap: ```python response = requests.post( "https://api.Nexainference.com/v1/materials/predict", headers={"X-API-Key": "yourapi_key"}, json={"structure": "POSCAR data string"} )
result = response.json() print(f"Band Gap: {result['prediction']} eV") print(f"Confidence: {result['confidence']}%")
Output: {"prediction": 2.5, "confidence": 98.5}
```
Core Models
Biology: HelixSynth-Pro (Protein Structure Prediction)
- Model: Variational Autoencoder (VAE) with diffusion
- Purpose: Predicts protein secondary structures (H: Helix, E: Sheet, C: Coil)
- Accuracy: 70.82% overall (Q3 score)
- Latency: ~78ms
- Details: See https://github.com/DarkStarStrix/CSE-Repo-of-Advanced-Computation-ML-and-Systems-Engineering/blob/main/Papers/ComputerScience/MachineLearning/ProteinStructurePrediction.pdf
Materials Science: Materials GNN
- Model: Graph Neural Network (GNN)
- Purpose: Predicts material properties (band gap, formation energy)
- Accuracy: 98.5% on crystal structures
- Latency: ~62ms
- Details: See https://github.com/DarkStarStrix/CSE-Repo-of-Advanced-Computation-ML-and-Systems-Engineering/blob/main/Papers/ComputerScience/MachineLearning/MaterialScincebatteryionprediction.pdf
API Usage
The API endpoints return predictions and confidence scores in JSON format: {"prediction": value, "confidence": percentage}.
Endpoints
1. /v1/bio/predict - Protein Structure Prediction
- Method: POST
- Input:
json { "sequence": "MAKQVKL" } - Output:
json { "prediction": "H", "confidence": 80.56 }
3. /v1/materials/predict - Material Property Prediction
- Method: POST
- Input:
json { "structure": "POSCAR data string" } - Output:
json { "prediction": 2.5, "confidence": 98.5 }
Authentication
Include your API key in the request header:
bash
X-API-Key: your_api_key
Error Responses
- 400 Bad Request: Invalid input format
- 401 Unauthorized: Missing or invalid API key
- 429 Too Many Requests: Rate limit exceeded
- 500 Server Error: Internal issue (contact support)
Installation (Local Development)
Clone the Repository:
bash git clone https://github.com/DarkStarStrix/Nexa_Inference.gitcd Lambda_Zero ```Install Dependencies:
bash pip install -r requirements.txtRun the API Locally:
bash python app/main.pyThe API will be available athttp://localhost:8000.Docker Deployment (Optional):
bash docker-compose -f docker/docker-compose.yml up --build
Key Features
- Fast: Average response time ~50ms
- Accurate: >95% accuracy across domains
- Reliable: Confidence scores with every prediction
- Scalable: Supports millions of requests daily
- Secure: SOC2 Type II compliant
Example Outputs
Protein Structure
json
{
"prediction": "H",
"confidence": 80.56
}
Astrophysics
json
{
"prediction": "GALAXY",
"confidence": 97.29
}
Materials Science
json
{
"prediction": 2.5,
"confidence": 98.5
}
Use Cases
- Biology: Protein design, drug discovery
- Astrophysics: Stellar classification, exoplanet research
- Materials Science: Material discovery, energy applications
Resources
Enterprise Support
For custom models, on-premise deployment, or integration help, email: allanw.mk@gmail.com.
License
Commercial license - see LICENSE
Owner
- Name: Allan Murimi Wandia
- Login: DarkStarStrix
- Kind: user
- Location: U.S.A
- Company: Freelance
- Website: https://www.kaggle.com/allanwandia
- Repositories: 1
- Profile: https://github.com/DarkStarStrix
Full stack Dev Turning ideas into projects
GitHub Events
Total
- Push event: 2
- Pull request review comment event: 1
- Pull request review event: 2
- Pull request event: 1
- Create event: 1
Last Year
- Push event: 2
- Pull request review comment event: 1
- Pull request review event: 2
- Pull request event: 1
- Create event: 1