Science Score: 54.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
✓CITATION.cff file
Found CITATION.cff file -
✓codemeta.json file
Found codemeta.json file -
✓.zenodo.json file
Found .zenodo.json file -
○DOI references
-
○Academic publication links
-
✓Committers with academic emails
2 of 23 committers (8.7%) from academic institutions -
○Institutional organization owner
-
○JOSS paper metadata
-
○Scientific vocabulary similarity
Low similarity (11.5%) to scientific vocabulary
Keywords
Repository
View model summaries in PyTorch!
Basic Info
Statistics
- Stars: 2,844
- Watchers: 15
- Forks: 131
- Open Issues: 64
- Releases: 32
Topics
Metadata Files
README.md
torchinfo
(formerly torch-summary)
Torchinfo provides information complementary to what is provided by print(your_model) in PyTorch, similar to Tensorflow's model.summary() API to view the visualization of the model, which is helpful while debugging your network. In this project, we implement a similar functionality in PyTorch and create a clean, simple interface to use in your projects.
This is a completely rewritten version of the original torchsummary and torchsummaryX projects by @sksq96 and @nmhkahn. This project addresses all of the issues and pull requests left on the original projects by introducing a completely new API.
Supports PyTorch versions 1.4.0+.
Usage
pip install torchinfo
Alternatively, via conda:
conda install -c conda-forge torchinfo
How To Use
```python from torchinfo import summary
model = ConvNet() batchsize = 16 summary(model, inputsize=(batch_size, 1, 28, 28)) ```
```
Layer (type:depth-idx) Input Shape Output Shape Param # Mult-Adds
SingleInputNet [7, 1, 28, 28] [7, 10] -- -- ├─Conv2d: 1-1 [7, 1, 28, 28] [7, 10, 24, 24] 260 1,048,320 ├─Conv2d: 1-2 [7, 10, 12, 12] [7, 20, 8, 8] 5,020 2,248,960 ├─Dropout2d: 1-3 [7, 20, 8, 8] [7, 20, 8, 8] -- -- ├─Linear: 1-4 [7, 320] [7, 50] 16,050 112,350
├─Linear: 1-5 [7, 50] [7, 10] 510 3,570
Total params: 21,840 Trainable params: 21,840 Non-trainable params: 0
Total mult-adds (M): 3.41
Input size (MB): 0.02 Forward/backward pass size (MB): 0.40 Params size (MB): 0.09
Estimated Total Size (MB): 0.51
```
Note: if you are using a Jupyter Notebook or Google Colab, summary(model, ...) must be the returned value of the cell.
If it is not, you should wrap the summary in a print(), e.g. print(summary(model, ...)).
See tests/jupyter_test.ipynb for examples.
This version now supports:
- RNNs, LSTMs, and other recursive layers
- Branching output used to explore model layers using specified depths
- Returns ModelStatistics object containing all summary data fields
- Configurable rows/columns
- Jupyter Notebook / Google Colab
Other new features:
- Verbose mode to show weights and bias layers
- Accepts either input data or simply the input shape!
- Customizable line widths and batch dimension
- Comprehensive unit/output testing, linting, and code coverage testing
Community Contributions:
- Sequentials & ModuleLists (thanks to @roym899)
- Improved Mult-Add calculations (thanks to @TE-StefanUhlich, @zmzhang2000)
- Dict/Misc input data (thanks to @e-dorigatti)
- Pruned layer support (thanks to @MajorCarrot)
Documentation
```python def summary( model: nn.Module, inputsize: Optional[INPUTSIZETYPE] = None, inputdata: Optional[INPUTDATATYPE] = None, batchdim: Optional[int] = None, cacheforwardpass: Optional[bool] = None, colnames: Optional[Iterable[str]] = None, colwidth: int = 25, depth: int = 3, device: Optional[torch.device] = None, dtypes: Optional[List[torch.dtype]] = None, mode: str = "same", rowsettings: Optional[Iterable[str]] = None, verbose: int = 1, **kwargs: Any, ) -> ModelStatistics: """ Summarize the given PyTorch model. Summarized information includes: 1) Layer names, 2) input/output shapes, 3) kernel shape, 4) # of parameters, 5) # of operations (Mult-Adds), 6) whether layer is trainable
NOTE: If neither inputdata or inputsize are provided, no forward pass through the network is performed, and the provided model information is limited to layer names.
Args: model (nn.Module): PyTorch model to summarize. The model should be fully in either train() or eval() mode. If layers are not all in the same mode, running summary may have side effects on batchnorm or dropout statistics. If you encounter an issue with this, please open a GitHub issue.
input_size (Sequence of Sizes):
Shape of input data as a List/Tuple/torch.Size
(dtypes must match model input, default is FloatTensors).
You should include batch size in the tuple.
Default: None
input_data (Sequence of Tensors):
Arguments for the model's forward pass (dtypes inferred).
If the forward() function takes several parameters, pass in a list of
args or a dict of kwargs (if your forward() function takes in a dict
as its only argument, wrap it in a list).
Default: None
batch_dim (int):
Batch_dimension of input data. If batch_dim is None, assume
input_data / input_size contains the batch dimension, which is used
in all calculations. Else, expand all tensors to contain the batch_dim.
Specifying batch_dim can be an runtime optimization, since if batch_dim
is specified, torchinfo uses a batch size of 1 for the forward pass.
Default: None
cache_forward_pass (bool):
If True, cache the run of the forward() function using the model
class name as the key. If the forward pass is an expensive operation,
this can make it easier to modify the formatting of your model
summary, e.g. changing the depth or enabled column types, especially
in Jupyter Notebooks.
WARNING: Modifying the model architecture or input data/input size when
this feature is enabled does not invalidate the cache or re-run the
forward pass, and can cause incorrect summaries as a result.
Default: False
col_names (Iterable[str]):
Specify which columns to show in the output. Currently supported: (
"input_size",
"output_size",
"num_params",
"params_percent",
"kernel_size",
"groups",
"mult_adds",
"trainable",
)
Default: ("output_size", "num_params")
If input_data / input_size are not provided, only "num_params" is used.
col_width (int):
Width of each column.
Default: 25
depth (int):
Depth of nested layers to display (e.g. Sequentials).
Nested layers below this depth will not be displayed in the summary.
Default: 3
device (torch.Device):
Uses this torch device for model and input_data.
If not specified, uses the dtype of input_data if given, or the
parameters of the model. Otherwise, uses the result of
torch.cuda.is_available().
Default: None
dtypes (List[torch.dtype]):
If you use input_size, torchinfo assumes your input uses FloatTensors.
If your model use a different data type, specify that dtype.
For multiple inputs, specify the size of both inputs, and
also specify the types of each parameter here.
Default: None
mode (str)
Either "train", "eval" or "same", which determines whether we call
model.train() or model.eval() before calling summary(). In any case,
original model mode is restored at the end.
Default: "same".
row_settings (Iterable[str]):
Specify which features to show in a row. Currently supported: (
"ascii_only",
"depth",
"var_names",
)
Default: ("depth",)
verbose (int):
0 (quiet): No output
1 (default): Print model summary
2 (verbose): Show weight and bias layers in full detail
Default: 1
If using a Juypter Notebook or Google Colab, the default is 0.
**kwargs:
Other arguments used in `model.forward` function. Passing *args is no
longer supported.
Return: ModelStatistics object See torchinfo/model_statistics.py for more information. """ ```
Examples
Get Model Summary as String
```python from torchinfo import summary
modelstats = summary(yourmodel, (1, 3, 28, 28), verbose=0) summarystr = str(modelstats)
summary_str contains the string representation of the summary!
```
Explore Different Configurations
```python class LSTMNet(nn.Module): def init(self, vocabsize=20, embeddim=300, hiddendim=512, numlayers=2): super().init() self.hiddendim = hiddendim self.embedding = nn.Embedding(vocabsize, embeddim) self.encoder = nn.LSTM(embeddim, hiddendim, numlayers=numlayers, batchfirst=True) self.decoder = nn.Linear(hiddendim, vocab_size)
def forward(self, x):
embed = self.embedding(x)
out, hidden = self.encoder(embed)
out = self.decoder(out)
out = out.view(-1, out.size(2))
return out, hidden
summary( LSTMNet(), (1, 100), dtypes=[torch.long], verbose=2, colwidth=16, colnames=["kernelsize", "outputsize", "numparams", "multadds"], rowsettings=["varnames"], ) ```
```
Layer (type (var_name)) Kernel Shape Output Shape Param # Mult-Adds
LSTMNet (LSTMNet) -- [100, 20] -- -- ├─Embedding (embedding) -- [1, 100, 300] 6,000 6,000 │ └─weight [300, 20] └─6,000 ├─LSTM (encoder) -- [1, 100, 512] 3,768,320 376,832,000 │ └─weightihl0 [2048, 300] ├─614,400 │ └─weighthhl0 [2048, 512] ├─1,048,576 │ └─biasihl0 [2048] ├─2,048 │ └─biashhl0 [2048] ├─2,048 │ └─weightihl1 [2048, 512] ├─1,048,576 │ └─weighthhl1 [2048, 512] ├─1,048,576 │ └─biasihl1 [2048] ├─2,048 │ └─biashhl1 [2048] └─2,048 ├─Linear (decoder) -- [1, 100, 20] 10,260 10,260 │ └─weight [512, 20] ├─10,240
│ └─bias [20] └─20
Total params: 3,784,580 Trainable params: 3,784,580 Non-trainable params: 0
Total mult-adds (M): 376.85
Input size (MB): 0.00 Forward/backward pass size (MB): 0.67 Params size (MB): 15.14
Estimated Total Size (MB): 15.80
```
ResNet
```python import torchvision
model = torchvision.models.resnet152() summary(model, (1, 3, 224, 224), depth=3) ```
```
Layer (type:depth-idx) Output Shape Param #
ResNet [1, 1000] -- ├─Conv2d: 1-1 [1, 64, 112, 112] 9,408 ├─BatchNorm2d: 1-2 [1, 64, 112, 112] 128 ├─ReLU: 1-3 [1, 64, 112, 112] -- ├─MaxPool2d: 1-4 [1, 64, 56, 56] -- ├─Sequential: 1-5 [1, 256, 56, 56] -- │ └─Bottleneck: 2-1 [1, 256, 56, 56] -- │ │ └─Conv2d: 3-1 [1, 64, 56, 56] 4,096 │ │ └─BatchNorm2d: 3-2 [1, 64, 56, 56] 128 │ │ └─ReLU: 3-3 [1, 64, 56, 56] -- │ │ └─Conv2d: 3-4 [1, 64, 56, 56] 36,864 │ │ └─BatchNorm2d: 3-5 [1, 64, 56, 56] 128 │ │ └─ReLU: 3-6 [1, 64, 56, 56] -- │ │ └─Conv2d: 3-7 [1, 256, 56, 56] 16,384 │ │ └─BatchNorm2d: 3-8 [1, 256, 56, 56] 512 │ │ └─Sequential: 3-9 [1, 256, 56, 56] 16,896 │ │ └─ReLU: 3-10 [1, 256, 56, 56] -- │ └─Bottleneck: 2-2 [1, 256, 56, 56] --
... ... ...
├─AdaptiveAvgPool2d: 1-9 [1, 2048, 1, 1] --
├─Linear: 1-10 [1, 1000] 2,049,000
Total params: 60,192,808 Trainable params: 60,192,808 Non-trainable params: 0
Total mult-adds (G): 11.51
Input size (MB): 0.60 Forward/backward pass size (MB): 360.87 Params size (MB): 240.77
Estimated Total Size (MB): 602.25
```
Multiple Inputs w/ Different Data Types
```python class MultipleInputNetDifferentDtypes(nn.Module): def init(self): super().init() self.fc1a = nn.Linear(300, 50) self.fc1b = nn.Linear(50, 10)
self.fc2a = nn.Linear(300, 50)
self.fc2b = nn.Linear(50, 10)
def forward(self, x1, x2):
x1 = F.relu(self.fc1a(x1))
x1 = self.fc1b(x1)
x2 = x2.type(torch.float)
x2 = F.relu(self.fc2a(x2))
x2 = self.fc2b(x2)
x = torch.cat((x1, x2), 0)
return F.log_softmax(x, dim=1)
summary(model, [(1, 300), (1, 300)], dtypes=[torch.float, torch.long]) ```
Alternatively, you can also pass in the input_data itself, and torchinfo will automatically infer the data types.
```python inputdata = torch.randn(1, 300) otherinput_data = torch.randn(1, 300).long() model = MultipleInputNetDifferentDtypes()
summary(model, inputdata=[inputdata, otherinputdata, ...]) ```
Sequentials & ModuleLists
```python class ContainerModule(nn.Module):
def __init__(self):
super().__init__()
self._layers = nn.ModuleList()
self._layers.append(nn.Linear(5, 5))
self._layers.append(ContainerChildModule())
self._layers.append(nn.Linear(5, 5))
def forward(self, x):
for layer in self._layers:
x = layer(x)
return x
class ContainerChildModule(nn.Module):
def __init__(self):
super().__init__()
self._sequential = nn.Sequential(nn.Linear(5, 5), nn.Linear(5, 5))
self._between = nn.Linear(5, 5)
def forward(self, x):
out = self._sequential(x)
out = self._between(out)
for l in self._sequential:
out = l(out)
out = self._sequential(x)
for l in self._sequential:
out = l(out)
return out
summary(ContainerModule(), (1, 5)) ```
```
Layer (type:depth-idx) Output Shape Param #
ContainerModule [1, 5] -- ├─ModuleList: 1-1 -- -- │ └─Linear: 2-1 [1, 5] 30 │ └─ContainerChildModule: 2-2 [1, 5] -- │ │ └─Sequential: 3-1 [1, 5] -- │ │ │ └─Linear: 4-1 [1, 5] 30 │ │ │ └─Linear: 4-2 [1, 5] 30 │ │ └─Linear: 3-2 [1, 5] 30 │ │ └─Sequential: 3-3 -- (recursive) │ │ │ └─Linear: 4-3 1, 5 │ │ │ └─Linear: 4-4 1, 5 │ │ └─Sequential: 3-4 1, 5 │ │ │ └─Linear: 4-5 1, 5 │ │ │ └─Linear: 4-6 1, 5 │ │ │ └─Linear: 4-7 1, 5 │ │ │ └─Linear: 4-8 1, 5
│ └─Linear: 2-3 [1, 5] 30
Total params: 150 Trainable params: 150 Non-trainable params: 0
Total mult-adds (M): 0.00
Input size (MB): 0.00 Forward/backward pass size (MB): 0.00 Params size (MB): 0.00
Estimated Total Size (MB): 0.00
```
Contributing
All issues and pull requests are much appreciated! If you are wondering how to build the project:
- torchinfo is actively developed using the lastest version of Python.
- Changes should be backward compatible to Python 3.8, and will follow Python's End-of-Life guidance for old versions.
- Run
pip install -r requirements-dev.txt. We use the latest versions of all dev packages. - Run
pre-commit install. - To use auto-formatting tools, use
pre-commit run -a. - To run unit tests, run
pytest. - To update the expected output files, run
pytest --overwrite. - To skip output file tests, use
pytest --no-output
References
- Thanks to @sksq96, @nmhkahn, and @sangyx for providing the inspiration for this project.
- For Model Size Estimation @jacobkimmel (details here)
Owner
- Name: Tyler Yep
- Login: TylerYep
- Kind: user
- Location: Stanford University
- Company: Robinhood
- Website: https://www.tyleryep.com
- Twitter: tyleryep1
- Repositories: 62
- Profile: https://github.com/TylerYep
Hi, I'm Tyler!
Citation (CITATION.cff)
cff-version: 1.2.0
title: torchinfo
message: If you use this software, please cite it as below.
type: software
authors:
- given-names: Tyler
family-names: Yep
email: tyep@cs.stanford.edu
identifiers:
- type: url
value: 'https://github.com/TylerYep/torchinfo'
description: View model summaries in PyTorch!
repository-code: 'https://github.com/TylerYep/torchinfo'
abstract: >-
Torchinfo provides information complementary to
what is provided by print(your_model) in PyTorch.
keywords:
- torch
- pytorch
- torchinfo
- torchsummary
license: MIT
date-released: '2020-03-16'
GitHub Events
Total
- Issues event: 19
- Watch event: 274
- Delete event: 19
- Issue comment event: 41
- Push event: 55
- Pull request event: 52
- Fork event: 13
- Create event: 19
Last Year
- Issues event: 19
- Watch event: 274
- Delete event: 19
- Issue comment event: 41
- Push event: 55
- Pull request event: 52
- Fork event: 13
- Create event: 19
Committers
Last synced: 9 months ago
Top Committers
| Name | Commits | |
|---|---|---|
| Tyler Yep | t****p@c****u | 263 |
| pre-commit-ci[bot] | 6****] | 113 |
| Tanguy-ddv | t****1@g****m | 9 |
| mert-kurttutan | k****t@g****m | 6 |
| Sebastian Müller | s****r@g****m | 4 |
| Élie Goudout | e****t@t****m | 4 |
| zm Zhang | 9****4@q****m | 2 |
| Adam Cecile | a****e@l****t | 2 |
| Andrew Lavin | a****n@a****g | 2 |
| Krithic Kumar | 3****0 | 2 |
| Sri Datta Budaraju | b****a@g****m | 2 |
| Adithya Venkateswaran | a****1@g****m | 1 |
| Charles Jekel | c****l | 1 |
| DeepSource Bot | b****t@d****o | 1 |
| Emilio Dorigatti | e****i@g****m | 1 |
| Leo Lin | k****4@g****m | 1 |
| Leonard Bruns | r****9@g****m | 1 |
| Sarthak Pati | s****i@p****u | 1 |
| Stefan Uhlich | s****h@e****m | 1 |
| luke396 | 7****6 | 1 |
| michiroooo | m****o | 1 |
| mzhang | z****d@g****m | 1 |
| richardtml | o****x@g****m | 1 |
Committer Domains (Top 20 + Academic)
Issues and Pull Requests
Last synced: 6 months ago
All Time
- Total issues: 98
- Total pull requests: 135
- Average time to close issues: about 2 months
- Average time to close pull requests: 9 days
- Total issue authors: 89
- Total pull request authors: 21
- Average comments per issue: 1.96
- Average comments per pull request: 1.18
- Merged pull requests: 107
- Bot issues: 0
- Bot pull requests: 84
Past Year
- Issues: 19
- Pull requests: 45
- Average time to close issues: 12 days
- Average time to close pull requests: 3 days
- Issue authors: 15
- Pull request authors: 7
- Average comments per issue: 0.68
- Average comments per pull request: 0.24
- Merged pull requests: 32
- Bot issues: 0
- Bot pull requests: 29
Top Authors
Issue Authors
- ego-thales (6)
- mert-kurttutan (3)
- Freed-Wu (2)
- joaolcguerreiro (2)
- ltm920716 (1)
- ArulselvanMadhavan (1)
- jlclemon (1)
- minostauros (1)
- Antsthebul (1)
- jil818 (1)
- bjourne (1)
- imaspol (1)
- frankcaoyun (1)
- amandalucasp (1)
- SinChee (1)
Pull Request Authors
- pre-commit-ci[bot] (95)
- TylerYep (17)
- Tanguy-ddv (7)
- mert-kurttutan (6)
- snimu (4)
- andravin (3)
- ego-thales (2)
- SniperTNT (2)
- mylapallilavanyaa (2)
- DrMicrobit (1)
- fabiofumarola (1)
- sup3rgiu (1)
- kalekundert (1)
- sabrimansor (1)
- kburman (1)
Top Labels
Issue Labels
Pull Request Labels
Packages
- Total packages: 5
-
Total downloads:
- pypi 582,502 last-month
- Total docker downloads: 10,274
-
Total dependent packages: 70
(may contain duplicates) -
Total dependent repositories: 588
(may contain duplicates) - Total versions: 134
- Total maintainers: 1
pypi.org: torchinfo
Model summary in PyTorch, based off of the original torchsummary.
- Homepage: https://github.com/tyleryep/torchinfo
- Documentation: https://torchinfo.readthedocs.io/
- License: MIT
-
Latest release: 1.8.0
published almost 3 years ago
Rankings
Maintainers (1)
pypi.org: torch-summary
Model summary in PyTorch, based off of the original torchsummary.
- Homepage: https://github.com/tyleryep/torchinfo
- Documentation: https://torch-summary.readthedocs.io/
- License: MIT
-
Latest release: 1.4.5
published about 5 years ago
Rankings
Maintainers (1)
proxy.golang.org: github.com/TylerYep/torchinfo
- Documentation: https://pkg.go.dev/github.com/TylerYep/torchinfo#section-documentation
- License: mit
-
Latest release: v1.8.0
published almost 3 years ago
Rankings
proxy.golang.org: github.com/tyleryep/torchinfo
- Documentation: https://pkg.go.dev/github.com/tyleryep/torchinfo#section-documentation
- License: mit
-
Latest release: v1.8.0
published almost 3 years ago
Rankings
conda-forge.org: torchinfo
- Homepage: https://github.com/tyleryep/torchinfo
- License: MIT
-
Latest release: 1.7.1
published over 3 years ago
Rankings
Dependencies
- black * development
- codecov * development
- flake8 * development
- isort * development
- mypy * development
- pre-commit * development
- pycln * development
- pylint * development
- pylint_strict_informational * development
- pytest * development
- pytest-cov * development
- torch *
- torchvision *
- actions/checkout v2 composite
- actions/setup-python v2 composite
- codecov/codecov-action v1 composite