proglearn

NeuroData's package for exploring and using progressive learning algorithms

https://github.com/neurodata/proglearn

Science Score: 77.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
    Found CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
    Found .zenodo.json file
  • DOI references
    Found 3 DOI reference(s) in README
  • Academic publication links
    Links to: arxiv.org, zenodo.org
  • Committers with academic emails
    9 of 52 committers (17.3%) from academic institutions
  • Institutional organization owner
  • JOSS paper metadata
  • Scientific vocabulary similarity
    Low similarity (10.7%) to scientific vocabulary

Keywords

classification continual-learning decision-trees deep-learning deep-neural-networks domain-adaptation random-forests transfer-learning

Keywords from Contributors

closember mesh sequences interactive hacking network-simulation
Last synced: 4 months ago · JSON representation ·

Repository

NeuroData's package for exploring and using progressive learning algorithms

Basic Info
Statistics
  • Stars: 36
  • Watchers: 7
  • Forks: 42
  • Open Issues: 55
  • Releases: 7
Topics
classification continual-learning decision-trees deep-learning deep-neural-networks domain-adaptation random-forests transfer-learning
Created almost 6 years ago · Last pushed 10 months ago
Metadata Files
Readme Contributing License Citation

README.md

ProgLearn

DOI Build Status Codecov PyPI version arXiv License Netlify Status Downloads

ProgLearn (Progressive Learning) is a package for exploring and using progressive learning algorithms developed by the neurodata group.

Some system/package requirements: - Python: 3.6+ - OS: All major platforms (Linux, macOS, Windows) - Dependencies: tensorflow, scikit-learn, scipy, numpy, joblib

Owner

  • Name: neurodata
  • Login: neurodata
  • Kind: organization
  • Email: admin@neurodata.io
  • Location: everywhere

Citation (CITATION.cff)

# YAML 1.2
---
authors:
  -
    affiliation: "Johns Hopkins University, Baltimore, MD"
    family-names: Vogelstein
    given-names: Joshua
    orcid: "https://orcid.org/0000-0003-2487-6237"
  -
    affiliation: "Johns Hopkins University, Baltimore, MD"
    family-names: Dey
    given-names: Jayanta
  -
    affiliation: "Johns Hopkins University, Baltimore, MD"
    family-names: Hayden
    given-names: Helm
  -
    affiliation: "Johns Hopkins University, Baltimore, MD"
    family-names: LeVine
    given-names: Will
  -
    affiliation: "Johns Hopkins University, Baltimore, MD"
    family-names: Mehta
    given-names: Ronak
  -
    affiliation: "Johns Hopkins University, Baltimore, MD"
    family-names: Geisa
    given-names: Ali
  -
    affiliation: "Johns Hopkins University, Baltimore, MD"
    family-names: Xu
    given-names: Haoyin
    orcid: "https://orcid.org/0000-0001-8235-4950"
  -
    affiliation: "Baylor College of Medicine, Houston, TX"
    family-names: "van de Ven"
    given-names: Gido
  -
    affiliation: "Johns Hopkins University, Baltimore, MD"
    family-names: Chang
    given-names: Emily
  -
    affiliation: "Johns Hopkins University, Baltimore, MD"
    family-names: Gao
    given-names: Chenyu
  -
    affiliation: "Microsoft Research, Redmond, WA"
    family-names: Yang
    given-names: Weiwei
  -
    affiliation: "Microsoft Research, Redmond, WA"
    family-names: Tower
    given-names: Bryan
  -
    affiliation: "Microsoft Research, Redmond, WA"
    family-names: Larson
    given-names: Jonathan
  -
    affiliation: "Microsoft Research, Redmond, WA"
    family-names: White
    given-names: Christopher
  -
    affiliation: "Johns Hopkins University, Baltimore, MD"
    family-names: Priebe
    given-names: Carey
cff-version: "1.2.0"
date-released: 2022-03-11
identifiers:
  -
    type: url
    value: "https://arxiv.org/pdf/2004.12908.pdf"
  -
    type: doi
    value: 10.5281/zenodo.4060264
keywords:
  - Python
  - classification
  - "decision trees"
  - "lifelong learning"
  - "transfer learning"
  - "domain adaptation"
license: MIT
doi: 10.5281/zenodo.4060264
message: "If you use ProgLearn, please cite it using these metadata."
repository-code: "https://github.com/neurodata/ProgLearn"
title: "Representation Ensembling for Synergistic Lifelong Learning with Quasilinear Complexity"
version: "0.0.7"
...

GitHub Events

Total
  • Watch event: 2
  • Member event: 1
  • Push event: 10
Last Year
  • Watch event: 2
  • Member event: 1
  • Push event: 10

Committers

Last synced: 8 months ago

All Time
  • Total Commits: 1,127
  • Total Committers: 52
  • Avg Commits per committer: 21.673
  • Development Distribution Score (DDS): 0.813
Past Year
  • Commits: 0
  • Committers: 0
  • Avg Commits per committer: 0.0
  • Development Distribution Score (DDS): 0.0
Top Committers
Name Email Commits
Will LeVine l****l@i****m 211
Haoyin Xu h****u@g****m 182
jdey4 j****4@j****u 160
EYezerets e****s@g****m 92
Ubuntu u****u@i****l 65
Benjamin Straus 3****1 44
Ubuntu u****u@i****l 42
amyvanee a****0@g****m 32
echang39 e****2@g****m 29
Michael Ainsworth m****h@g****m 26
Chenyu Gao c****7@j****u 23
Ronak Mehta t****t@m****m 21
Rahul Swaminathan s****2@g****m 21
latasianguy 5****y 19
Yuta Kobayashi y****i@Y****l 16
hayden h****m@g****m 15
Ubuntu u****u@i****l 14
sir-talksalott 6****t 13
levinwv1 w****e@j****u 11
parthgvora p****a@g****m 10
mordred-skywalker 8****r 10
Jong Shin 5****3 8
v715 v****4@j****u 6
Ubuntu A****r@h****t 5
Ronak Mehta r****4@g****m 5
mkusman1 m****1@j****u 4
Jay j****1@j****u 4
Yu-Chung Peng y****2@j****u 4
tliu68 5****8 3
p-teng 5****g 3
and 22 more...

Issues and Pull Requests

Last synced: 8 months ago

All Time
  • Total issues: 52
  • Total pull requests: 49
  • Average time to close issues: 8 months
  • Average time to close pull requests: 8 days
  • Total issue authors: 14
  • Total pull request authors: 17
  • Average comments per issue: 2.29
  • Average comments per pull request: 1.92
  • Merged pull requests: 32
  • Bot issues: 0
  • Bot pull requests: 2
Past Year
  • Issues: 0
  • Pull requests: 0
  • Average time to close issues: N/A
  • Average time to close pull requests: N/A
  • Issue authors: 0
  • Pull request authors: 0
  • Average comments per issue: 0
  • Average comments per pull request: 0
  • Merged pull requests: 0
  • Bot issues: 0
  • Bot pull requests: 0
Top Authors
Issue Authors
  • jovo (17)
  • PSSF23 (11)
  • jdey4 (6)
  • levinwil (5)
  • AishwaryaSeth (2)
  • amyvanee (2)
  • rflperry (2)
  • Dante-Basile (1)
  • kaleab-k (1)
  • mkusman1 (1)
  • eigenvivek (1)
  • LizaNaydanova (1)
  • KevinWang905 (1)
  • nhahn7 (1)
Pull Request Authors
  • PSSF23 (18)
  • amyvanee (8)
  • jdey4 (3)
  • kfenggg (3)
  • khelmr (2)
  • LizaNaydanova (2)
  • dependabot[bot] (2)
  • Dante-Basile (2)
  • SUKI-O (2)
  • nhahn7 (1)
  • parthgvora (1)
  • tliu68 (1)
  • AishwaryaSeth (1)
  • mordred-skywalker (1)
  • waleeattia (1)
Top Labels
Issue Labels
ndd (21) feature (7) sklearn (5) paper (2) bug fix (1) duplicate (1)
Pull Request Labels
draft (5) dependencies (2)

Packages

  • Total packages: 1
  • Total downloads:
    • pypi 35 last-month
  • Total dependent packages: 1
  • Total dependent repositories: 1
  • Total versions: 8
  • Total maintainers: 3
pypi.org: proglearn

A package to implement and extend the methods desribed in 'Omnidirectional Transfer for Quasilinear Lifelong Learning'

  • Versions: 8
  • Dependent Packages: 1
  • Dependent Repositories: 1
  • Downloads: 35 Last month
Rankings
Forks count: 6.2%
Dependent packages count: 10.0%
Stargazers count: 11.0%
Average: 13.7%
Downloads: 19.7%
Dependent repos count: 21.8%
Maintainers (3)
Last synced: 4 months ago

Dependencies

dev-requirements.txt pypi
  • black * development
  • codecov * development
  • coverage * development
  • pytest * development
  • pytest-cov * development
  • twine * development
  • wheel * development
docs/requirements.txt pypi
  • ipykernel ==5.1.0
  • ipython ==7.16.3
  • nbsphinx ==0.8.7
  • numpydoc ==0.7
  • recommonmark ==0.5.0
  • sphinx >=1.8.5
  • sphinx_rtd_theme ==0.4.2
  • sphinxcontrib-rawfiles *
requirements.txt pypi
  • joblib >=0.14.1
  • numpy >=1.19.2
  • scikit-learn >=0.22.0
  • scipy >=1.4.1
  • tensorflow >=1.19.0