matchms - processing and similarity evaluation of mass spectrometry data.

matchms - processing and similarity evaluation of mass spectrometry data. - Published in JOSS (2020)

https://github.com/matchms/matchms

Science Score: 98.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
    Found CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
    Found .zenodo.json file
  • DOI references
    Found 10 DOI reference(s) in README and JOSS metadata
  • Academic publication links
    Links to: joss.theoj.org, zenodo.org
  • Committers with academic emails
  • Institutional organization owner
  • JOSS paper metadata
    Published in Journal of Open Source Software

Keywords

analysis fuzzy-matching fuzzy-search mass-spectrometry metabolomics python3 similarity-measures

Keywords from Contributors

gass-chromatography annotations point-cloud parallel blackhole meshes gravitational-lenses usegalaxy ecology psychology-experiments

Scientific Fields

Chemistry Physical Sciences - 69% confidence
Sociology Social Sciences - 64% confidence
Engineering Computer Science - 60% confidence
Last synced: 4 months ago · JSON representation ·

Repository

Python library for processing (tandem) mass spectrometry data and for computing spectral similarities.

Basic Info
  • Host: GitHub
  • Owner: matchms
  • License: apache-2.0
  • Language: Python
  • Default Branch: master
  • Homepage:
  • Size: 39.3 MB
Statistics
  • Stars: 226
  • Watchers: 10
  • Forks: 75
  • Open Issues: 55
  • Releases: 53
Topics
analysis fuzzy-matching fuzzy-search mass-spectrometry metabolomics python3 similarity-measures
Created over 5 years ago · Last pushed 4 months ago
Metadata Files
Readme Changelog Contributing License Code of conduct Citation Zenodo

README.rst

`fair-software.nl `_ recommendations:

|GitHub Badge|
|License Badge|
|Conda Badge| |Pypi Badge| |Research Software Directory Badge|
|Zenodo Badge|
|CII Best Practices Badge| |Howfairis Badge|

Code quality checks:

|CI First Code Checks| |CI Build|
|ReadTheDocs Badge|
|Sonarcloud Quality Gate Badge| |Sonarcloud Coverage Badge|

.. image:: readthedocs/_static/matchms_header.png
   :target: readthedocs/_static/matchms.png
   :align: left
   :alt: matchms

Matchms is a versatile open-source Python package developed for importing, processing, cleaning, and comparing mass spectrometry data (MS/MS). It facilitates the implementation of straightforward, reproducible workflows, transforming raw data from common mass spectra file formats into pre- and post-processed spectral data, and enabling large-scale spectral similarity comparisons.

The software supports a range of popular spectral data formats, including mzML, mzXML, msp, metabolomics-USI, MGF, and JSON. Matchms offers an array of tools for metadata cleaning and validation, alongside basic peak filtering, to ensure data accuracy and integrity. A key feature of matchms is its ability to apply various pairwise similarity measures for comparing extensive amounts of spectra. This encompasses not only common Cosine-related scores but also molecular fingerprint-based comparisons and other metadata-related assessments.

One of the strengths of matchms is its extensibility, allowing users to integrate custom similarity measures. Notable examples of spectrum similarity measures tailored for Matchms include `Spec2Vec `_ and `MS2DeepScore `_. Additionally, Matchms enhances efficiency by using faster similarity measures for initial pre-selection and supports storing results in sparse data formats, enabling the comparison of several hundred thousands of spectra. This combination of features positions Matchms as a comprehensive tool for mass spectrometry data analysis.

If you use matchms in your research, please cite the following software papers:  

F Huber, S. Verhoeven, C. Meijer, H. Spreeuw, E. M. Villanueva Castilla, C. Geng, J.J.J. van der Hooft, S. Rogers, A. Belloum, F. Diblen, J.H. Spaaks, (2020). matchms - processing and similarity evaluation of mass spectrometry data. Journal of Open Source Software, 5(52), 2411, https://doi.org/10.21105/joss.02411

de Jonge NF, Hecht H, Michael Strobel, Mingxun Wang, van der Hooft JJJ, Huber F. (2024). Reproducible MS/MS library cleaning pipeline in matchms. Journal of Cheminformatics, 2024, https://jcheminf.biomedcentral.com/articles/10.1186/s13321-024-00878-1


.. |GitHub Badge| image:: https://img.shields.io/badge/github-repo-000.svg?logo=github&labelColor=gray&color=blue
   :target: https://github.com/matchms/matchms
   :alt: GitHub Badge

.. |License Badge| image:: https://img.shields.io/github/license/matchms/matchms
   :target: https://github.com/matchms/matchms
   :alt: License Badge

.. |Conda Badge| image:: https://anaconda.org/bioconda/matchms/badges/version.svg
   :target: https://anaconda.org/bioconda/matchms
   :alt: Conda Badge

.. |Pypi Badge| image:: https://img.shields.io/pypi/v/matchms?color=blue
   :target: https://pypi.org/project/matchms/
   :alt: Pypi Badge

.. |Research Software Directory Badge| image:: https://img.shields.io/badge/rsd-matchms-00a3e3.svg
   :target: https://www.research-software.nl/software/matchms
   :alt: Research Software Directory Badge

.. |Zenodo Badge| image:: https://zenodo.org/badge/DOI/10.5281/zenodo.3859772.svg
   :target: https://doi.org/10.5281/zenodo.3859772
   :alt: Zenodo Badge

.. |JOSS Badge| image:: https://joss.theoj.org/papers/10.21105/joss.02411/status.svg
   :target: https://doi.org/10.21105/joss.02411
   :alt: JOSS Badge

.. |CII Best Practices Badge| image:: https://bestpractices.coreinfrastructure.org/projects/3792/badge
   :target: https://bestpractices.coreinfrastructure.org/projects/3792
   :alt: CII Best Practices Badge

.. |Howfairis Badge| image:: https://img.shields.io/badge/fair--software.eu-%E2%97%8F%20%20%E2%97%8F%20%20%E2%97%8F%20%20%E2%97%8F%20%20%E2%97%8F-green
   :target: https://fair-software.eu
   :alt: Howfairis badge

.. |CI First Code Checks| image:: https://github.com/matchms/matchms/actions/workflows/CI_first_code_check.yml/badge.svg
    :alt: Continuous integration workflow
    :target: https://github.com/matchms/matchms/actions/workflows/CI_first_code_check.yml

.. |CI Build| image:: https://github.com/matchms/matchms/actions/workflows/CI_build.yml/badge.svg
    :alt: Continuous integration workflow
    :target: https://github.com/matchms/matchms/actions/workflows/CI_build.yml

.. |ReadTheDocs Badge| image:: https://readthedocs.org/projects/matchms/badge/?version=latest
    :alt: Documentation Status
    :target: https://matchms.readthedocs.io/en/latest/?badge=latest

.. |Sonarcloud Quality Gate Badge| image:: https://sonarcloud.io/api/project_badges/measure?project=matchms_matchms&metric=alert_status
   :target: https://sonarcloud.io/dashboard?id=matchms_matchms
   :alt: Sonarcloud Quality Gate

.. |Sonarcloud Coverage Badge| image:: https://sonarcloud.io/api/project_badges/measure?project=matchms_matchms&metric=coverage
   :target: https://sonarcloud.io/component_measures?id=matchms_matchms&metric=Coverage&view=list
   :alt: Sonarcloud Coverage

**********************************
Latest changes (matchms >= 0.18.0)
**********************************

Pipeline class
==============

To make typical matchms workflows (data import, processing, score computations) more accessible to users, matchms now offers a `Pipeline` class to handle complex workflows. This also allows to create, import, export, or modify workflows using yaml files. See code examples below (and soon: updated tutorial).

Sparse scores array
===================

We realized that many matchms-based workflows aim to compare many-to-many spectra whereby not all pairs and scores are equally important. Often, for instance, it will be about searching similar or related spectra/compounds. This also means that often not all scores need to be stored (or computed). For this reason, we now shifted to a sparse handling of scores in matchms (that means: only storing actually computed, non-null values).

.. image:: readthedocs/_static/matchms_sketch.png
   :target: readthedocs/_static/matchms_sketch.png
   :align: left
   :alt: matchms code design


***********************
Documentation for users
***********************
For more extensive documentation `see our readthedocs `_, our `matchms introduction tutorial `_ or the `user documentation `_.

Installation
============

Prerequisites:  

- Python 3.10 - 3.13, (higher versions should work as well, but are not yet tested systematically)
- Anaconda (recommended)

We recommend installing matchms in a new virtual environment to avoid dependency clashes

.. code-block:: console

  conda create --name matchms python=3.12
  conda activate matchms
  conda install --channel bioconda --channel conda-forge matchms

matchms ecosystem -> additional functionalities
===============================================

Additional packages can complement Matchms functionalities.  
To date, we are aware of:

+ `Spec2Vec `_ an alternative machine-learning spectral similarity score that can be installed by `pip install spec2vec` and be imported as `from spec2vec import Spec2Vec` following the same API as the scores in `matchms.similarity`.

+ `MS2DeepScore `_ a supervised, deep-learning based spectral similarity score that can be installed by `pip install ms2deepscore` and be imported as `from ms2deepscore import MS2DeepScore` following the same API as the scores in `matchms.similarity`.

+ `matchmsextras `_ contains additional functions to create networks based on spectral similarities, run spectrum searchers against `PubChem`, or additional plotting methods.

+ `MS2Query `_ Reliable and fast MS/MS spectral-based analogue search, running on top of matchms.

+ `memo `_ a method allowing a Retention Time (RT) agnostic alignment of metabolomics samples using the fragmentation spectra (MS2) of their constituents.

+ `RIAssigner `_ a tool for retention index calculation for gas chromatography - mass spectrometry (GC-MS) data.

+ `MSMetaEnhancer `_ is a Python package to collect mass spectral library metadata using various web services and computational chemistry packages.

+ `SimMS `_ is a python package with fast GPU-based implementations of common similarity classes such as `CudaCosineGreedy`, and `CudaModifiedCosine`.

*(if you know of any other packages that are fully compatible with matchms, let us know!)*

Ecosystem compatibility
-----------------------

.. compatibility matrix start

.. list-table::
   :header-rows: 1

   * - NumPy Version
     - spec2vec Status
     - ms2deepscore Status
     - ms2query Status
   * - .. image:: https://img.shields.io/badge/numpy-1.25-lightgrey?logo=numpy :alt: numpy
     - .. image:: https://img.shields.io/badge/spec2vec-0.8.0-red
     - .. image:: https://img.shields.io/badge/ms2deepscore-2.5.4-green
     - .. image:: https://img.shields.io/badge/ms2query-1.5.4-red
   * - .. image:: https://img.shields.io/badge/numpy-2.1-lightgrey?logo=numpy :alt: numpy
     - .. image:: https://img.shields.io/badge/spec2vec-0.8.0-red
     - .. image:: https://img.shields.io/badge/ms2deepscore-2.5.4-green
     - .. image:: https://img.shields.io/badge/ms2query-1.5.4-red

.. compatibility matrix end

Introduction
============

To get started with matchms, we recommend following our `matchms introduction tutorial `_.

Below is an example of using default filter steps for cleaning spectra, 
followed by calculating the Cosine score between mass Spectra in the `tests/testdata/pesticides.mgf `_ file.

.. code-block:: python

    from matchms.Pipeline import Pipeline, create_workflow

    workflow = create_workflow(
        yaml_file_name="my_config_file.yaml", # The workflow will be stored in a yaml file, this can be used to rerun your workflow or to share it with others.
        score_computations=[["cosinegreedy", {"tolerance": 1.0}]],
        )
    pipeline = Pipeline(workflow)
    pipeline.logging_file = "my_pipeline.log"  # for pipeline and logging message
    pipeline.run("tests/testdata/pesticides.mgf")
    
Below is a more advanced code example showing how you can make a specific pipeline for your needs.

.. code-block:: python

    import os
    from matchms.Pipeline import Pipeline, create_workflow
    from matchms.filtering.default_pipelines import DEFAULT_FILTERS, LIBRARY_CLEANING
    
    results_folder = "./results"
    os.makedirs(results_folder, exist_ok=True)
    
    workflow = create_workflow(
        yaml_file_name=os.path.join(results_folder, "my_config_file.yaml"),  # The workflow will be stored in a yaml file.
        query_filters=DEFAULT_FILTERS,
        reference_filters=LIBRARY_CLEANING + ["add_fingerprint"],
        score_computations=[["precursormzmatch", {"tolerance": 100.0}],
                            ["cosinegreedy", {"tolerance": 1.0}],
                            ["filter_by_range", {"name": "CosineGreedy_score", "low": 0.2}]],
    )
    pipeline = Pipeline(workflow)
    pipeline.logging_file = os.path.join(results_folder, "my_pipeline.log")  # for pipeline and logging message
    pipeline.logging_level = "WARNING"  # To define the verbosety of the logging
    pipeline.run("tests/testdata/pesticides.mgf", "my_reference_library.mgf",
                 cleaned_query_file=os.path.join(results_folder, "cleaned_query_spectra.mgf"),
                 cleaned_reference_file=os.path.join(results_folder,
                                                     "cleaned_library_spectra.mgf"))  # choose your own files


Alternatively, in particular, if you need more room to add custom functions and steps, the individual steps can run without using the matchms ``Pipeline``:

.. code-block:: python
    
    from matchms.importing import load_from_mgf
    from matchms.filtering import default_filters, normalize_intensities
    from matchms import calculate_scores
    from matchms.similarity import CosineGreedy

    # Read spectra from a MGF formatted file, for other formats see https://matchms.readthedocs.io/en/latest/api/matchms.importing.html 
    file = load_from_mgf("tests/testdata/pesticides.mgf")

    # Apply filters to clean and enhance each spectrum
    spectra = []
    for spectrum in file:
        # Apply default filter to standardize ion mode, correct charge and more.
        # Default filter is fully explained at https://matchms.readthedocs.io/en/latest/api/matchms.filtering.html .
        spectrum = default_filters(spectrum)
        # Scale peak intensities to maximum of 1
        spectrum = normalize_intensities(spectrum)
        spectra.append(spectrum)

    # Calculate Cosine similarity scores between all spectra
    # For other similarity score methods see https://matchms.readthedocs.io/en/latest/api/matchms.similarity.html .
    scores = calculate_scores(references=spectra,
                              queries=spectra,
                              similarity_function=CosineGreedy())

    # Matchms allows to get the best matches for any query using scores_by_query
    query = spectra[15]  # just an example
    best_matches = scores.scores_by_query(query, 'CosineGreedy_score', sort=True)

    # Print the calculated scores for each spectrum pair
    for (reference, score) in best_matches[:10]:
        # Ignore scores between same spectra
        if reference is not query:
            print(f"Reference scan id: {reference.metadata['scans']}")
            print(f"Query scan id: {query.metadata['scans']}")
            print(f"Score: {score[0]:.4f}")
            print(f"Number of matching peaks: {score[1]}")
            print("----------------------------")


Different spectrum similarity scores
====================================

Matchms comes with numerous different scoring methods in `matchms.similarity` but can also be supplemented by scores from external packages such as `Spec2Vec` or `MS2DeepScore`.

Code example: 

.. code-block:: python

    from matchms.importing import load_from_usi
    import matchms.filtering as msfilters
    import matchms.similarity as mssim


    usi1 = "mzspec:GNPS:GNPS-LIBRARY:accession:CCMSLIB00000424840"
    usi2 = "mzspec:MSV000086109:BD5_dil2x_BD5_01_57213:scan:760"

    mz_tolerance = 0.1

    spectrum1 = load_from_usi(usi1)
    spectrum1 = msfilters.select_by_mz(spectrum1, 0, spectrum1.get("precursor_mz"))
    spectrum1 = msfilters.remove_peaks_around_precursor_mz(spectrum1,
                                                           mz_tolerance=0.1)

    spectrum2 = load_from_usi(usi2)
    spectrum2 = msfilters.select_by_mz(spectrum2, 0, spectrum1.get("precursor_mz"))
    spectrum2 = msfilters.remove_peaks_around_precursor_mz(spectrum2,
                                                           mz_tolerance=0.1)
    # Compute scores:
    similarity_cosine = mssim.CosineGreedy(tolerance=mz_tolerance).pair(spectrum1, spectrum2)
    similarity_modified_cosine = mssim.ModifiedCosine(tolerance=mz_tolerance).pair(spectrum1, spectrum2)
    similarity_neutral_losses = mssim.NeutralLossesCosine(tolerance=mz_tolerance).pair(spectrum1, spectrum2)

    print(f"similarity_cosine: {similarity_cosine}")
    print(f"similarity_modified_cosine: {similarity_modified_cosine}")
    print(f"similarity_neutral_losses: {similarity_neutral_losses}")

    spectrum1.plot_against(spectrum2)


****************************
Documentation for developers
****************************

Installation
============

To install matchms, do:

.. code-block:: console

  git clone https://github.com/matchms/matchms.git
  cd matchms
  conda create --name matchms-dev python=3.12
  conda activate matchms-dev

  # If you use poetry
  python -m pip install --upgrade pip poetry
  poetry install --with dev

  # If you use pip
  pip install -r dev-requirements.txt
  pip install --editable .

Run the linter and formatter and automatically fix issues with:

.. code-block:: console

  ruff check --fix matchms/YOUR-MODIFIED-FILE.py
  ruff format matchms/YOUR-MODIFIED-FILE.py

You can automate the previous steps by using a pre-commit hook. This will automatically run the linter and formatter on
the modified files before a commit. If the linter or formatter fixes any issues, you will need to recommit your code.

.. code-block:: console

  pre-commit install


Run tests (including coverage) with:

.. code-block:: console

  pytest


Conda package
=============

The conda packaging is handled by a `recipe at Bioconda `_.

Publishing to PyPI will trigger the creation of a `pull request on the bioconda recipes repository `_
Once the PR is merged the new version of matchms will appear on `https://anaconda.org/bioconda/matchms `_

Flowchart
=========

.. figure:: paper/flowchart_matchms.png
  :width: 400
  :alt: Flowchart
  
  Flowchart of matchms workflow. Reference and query spectra are filtered using the same
  set of set filters (here: filter A and filter B). Once filtered, every reference spectrum is compared to
  every query spectrum using the matchms.Scores object.

Support
============

To get support join the public `Slack channel `_.

Contributing
============

If you want to contribute to the development of matchms,
have a look at the `contribution guidelines `_.

*******
License
*******

Copyright (c) 2024, Düsseldorf University of Applied Sciences & Netherlands eScience Center

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

*******
Credits
*******

This package was created with `Cookiecutter
`_ and the `NLeSC/python-template
`_.

Owner

  • Name: matchms
  • Login: matchms
  • Kind: organization

JOSS Publication

matchms - processing and similarity evaluation of mass spectrometry data.
Published
August 31, 2020
Volume 5, Issue 52, Page 2411
Authors
Florian Huber ORCID
Netherlands eScience Center, Science Park 140, 1098XG Amsterdam, The Netherlands
Stefan Verhoeven ORCID
Netherlands eScience Center, Science Park 140, 1098XG Amsterdam, The Netherlands
Christiaan Meijer ORCID
Netherlands eScience Center, Science Park 140, 1098XG Amsterdam, The Netherlands
Hanno Spreeuw ORCID
Netherlands eScience Center, Science Park 140, 1098XG Amsterdam, The Netherlands
Efraín Manuel Villanueva Castilla ORCID
School of Computing Science, University of Glasgow, Glasgow, United Kingdom
Cunliang Geng ORCID
Netherlands eScience Center, Science Park 140, 1098XG Amsterdam, The Netherlands
Justin J. j. van der Hooft ORCID
Bioinformatics Group, Plant Sciences Group, University of Wageningen, Wageningen, the Netherlands
Simon Rogers ORCID
School of Computing Science, University of Glasgow, Glasgow, United Kingdom
Adam Belloum ORCID
Netherlands eScience Center, Science Park 140, 1098XG Amsterdam, The Netherlands
Faruk Diblen ORCID
Netherlands eScience Center, Science Park 140, 1098XG Amsterdam, The Netherlands
Jurriaan H. Spaaks ORCID
Netherlands eScience Center, Science Park 140, 1098XG Amsterdam, The Netherlands
Editor
Arfon Smith ORCID
Tags
mass spectrometry metadata cleaning data processing similarity measures metabolomics

Citation (CITATION.cff)

# This CITATION.cff file was generated with cffinit.
# Visit https://bit.ly/cffinit to generate yours today!

cff-version: 1.2.0
title: matchms
message: >-
  If you use this software, please cite the referenced
  paper.
type: software
authors:
  - affiliation: Netherlands eScience Center
    family-names: Huber
    given-names: Florian
    orcid: 'https://orcid.org/0000-0002-3535-9406'
  - affiliation: Wageningen University and Research
    family-names: Hooft
    name-particle: van der
    given-names: Justin J. J.
    orcid: 'https://orcid.org/0000-0002-9340-5511'
  - affiliation: Netherlands eScience Center
    family-names: Spaaks
    given-names: Jurriaan H.
    orcid: 'https://orcid.org/0000-0002-7064-4069'
  - affiliation: Netherlands eScience Center
    family-names: Diblen
    given-names: Faruk
    orcid: 'https://orcid.org/0000-0002-0989-929X'
  - affiliation: Netherlands eScience Center
    family-names: Verhoeven
    given-names: Stefan
    orcid: 'https://orcid.org/0000-0002-5821-2060'
  - affiliation: Netherlands eScience Center
    family-names: Geng
    given-names: Cunliang
    orcid: 'https://orcid.org/0000-0002-1409-8358'
  - affiliation: Netherlands eScience Center
    family-names: Meijer
    given-names: Christiaan
    orcid: 'https://orcid.org/0000-0002-5529-5761'
  - affiliation: University of Glasgow
    family-names: Rogers
    given-names: Simon
    orcid: 'https://orcid.org/0000-0003-3578-4477'
  - affiliation: Netherlands eScience Center
    family-names: Belloum
    given-names: Adam
    orcid: 'https://orcid.org/0000-0001-6306-6937'
  - affiliation: Netherlands eScience Center
    family-names: Spreeuw
    given-names: Hanno
    orcid: 'https://orcid.org/0000-0002-5057-0322'
  - affiliation: University of Glasgow
    family-names: Villanueva Castilla
    given-names: Efrain Manuel
    orcid: 'https://orcid.org/0000-0001-7665-3575'
  - affiliation: University of Glasgow
    family-names: Ashouritaklimi
    given-names: Kianoosh
    orcid: 'https://orcid.org/0000-0001-6317-3193'
  - affiliation: Netherlands eScience Center
    family-names: de Jonge
    given-names: Niek
    orcid: 'https://orcid.org/0000-0002-3054-6210'
  - affiliation: Research Centre for Toxic Compounds in the Environment
    family-names: Hecht
    given-names: Helge
    orcid: 'https://orcid.org/0000-0001-6744-996X'
  - affiliation: 'ICS, Masaryk University'
    family-names: Skoryk
    given-names: Maksym
    orcid: 'https://orcid.org/0000-0003-2056-8018'
  - affiliation: Research Centre for Toxic Compounds in the Environment
    family-names: Ahmad
    given-names: Zargham
    orcid: 'https://orcid.org/0000-0002-6096-224X'
  - affiliation: Jožef Stefan Institute
    family-names: Piciga
    given-names: Aleksander
  - affiliation: 'Institute of Molecular Systems Biology, ETH Zürich'
    family-names: Rutz
    given-names: Adriano
    orcid: 'https://orcid.org/0000-0003-0443-9902'
  - affiliation: 'HSD, University of Applied Sciences Düsseldorf'
    family-names: Pollmann
    given-names: Julian
repository-code: 'https://github.com/matchms/matchms'
abstract: >-
  Python library for fuzzy comparison of mass spectrum data
  and other Python objects.
keywords:
  - python
  - similarity measures
  - mass spectrometry
  - fuzzy matching
  - fuzzy search
license: Apache-2.0
preferred-citation:
  type: article
  authors:
    - family-names: Huber
      given-names: Florian
      orcid: 'https://orcid.org/0000-0002-3535-9406'
      affiliation: Netherlands eScience Center
      address: 'Science Park 140, 1098XG Amsterdam, The Netherlands'
    - family-names: Verhoeven
      given-names: Stefan
      orcid: 'https://orcid.org/0000-0002-5821-2060'
      affiliation: Netherlands eScience Center
      address: 'Science Park 140, 1098XG Amsterdam, The Netherlands'
    - family-names: Meijer
      given-names: Christiaan
      orcid: 'https://orcid.org/0000-0002-5529-5761'
      affiliation: Netherlands eScience Center
      address: 'Science Park 140, 1098XG Amsterdam, The Netherlands'
    - family-names: Spreeuw
      given-names: Hanno
      orcid: 'https://orcid.org/0000-0002-5057-0322'
      affiliation: Netherlands eScience Center
      address: 'Science Park 140, 1098XG Amsterdam, The Netherlands'
    - family-names: Villanueva Castilla
      given-names: Efraín Manuel
      orcid: 'https://orcid.org/0000-0001-7665-3575'
      affiliation: 'School of Computing Science, University of Glasgow'
      address: 'Glasgow, United Kingdom'
    - family-names: Geng
      given-names: Cunliang
      orcid: 'https://orcid.org/0000-0002-1409-8358'
      affiliation: Netherlands eScience Center
      address: 'Science Park 140, 1098XG Amsterdam, The Netherlands'
    - family-names: van der Hooft
      given-names: Justin J. J.
      orcid: 'https://orcid.org/0000-0002-9340-5511'
      affiliation: 'Bioinformatics Group, Plant Sciences Group, University of Wageningen'
      address: 'Wageningen, the Netherlands'
    - family-names: Rogers
      given-names: Simon
      orcid: 'https://orcid.org/0000-0003-3578-4477'
      affiliation: 'School of Computing Science, University of Glasgow'
      address: 'Glasgow, United Kingdom'
    - family-names: Belloum
      given-names: Adam
      orcid: 'https://orcid.org/0000-0001-6306-6937'
      affiliation: Netherlands eScience Center
      address: 'Science Park 140, 1098XG Amsterdam, The Netherlands'
    - family-names: Diblen
      given-names: Faruk
      orcid: 'https://orcid.org/0000-0002-0989-929X'
      affiliation: Netherlands eScience Center
      address: 'Science Park 140, 1098XG Amsterdam, The Netherlands'
    - family-names: Spaaks
      given-names: Jurriaan H.
      orcid: 'https://orcid.org/0000-0002-7064-4069'
      affiliation: Netherlands eScience Center
      address: 'Science Park 140, 1098XG Amsterdam, The Netherlands'
    - family-names: Pollmann
      given-names: Julian
      affiliation: 'HSD, University of Applied Sciences Düsseldorf'
      address: 'Münsterstraße 156, 40476 Düsseldorf, Germany'
  title: matchms - processing and similarity evaluation of mass spectrometry data.
  journal: Journal of Open Source Software
  year: 2020
  doi: 10.21105/joss.02411

Papers & Mentions

Total mentions: 1

Spec2Vec: Improved mass spectral similarity scoring through learning of structural relationships
Last synced: 2 months ago

GitHub Events

Total
  • Create event: 46
  • Release event: 6
  • Issues event: 108
  • Watch event: 36
  • Delete event: 18
  • Issue comment event: 280
  • Push event: 215
  • Pull request review comment event: 48
  • Pull request review event: 63
  • Pull request event: 106
  • Fork event: 18
Last Year
  • Create event: 46
  • Release event: 6
  • Issues event: 108
  • Watch event: 36
  • Delete event: 18
  • Issue comment event: 281
  • Push event: 223
  • Pull request review comment event: 48
  • Pull request review event: 63
  • Pull request event: 108
  • Fork event: 18

Committers

Last synced: 5 months ago

All Time
  • Total Commits: 4,219
  • Total Committers: 37
  • Avg Commits per committer: 114.027
  • Development Distribution Score (DDS): 0.549
Past Year
  • Commits: 242
  • Committers: 13
  • Avg Commits per committer: 18.615
  • Development Distribution Score (DDS): 0.537
Top Committers
Name Email Commits
florian-huber 3****r 1,901
niekdejonge n****e@g****m 696
Jurriaan H. Spaaks j****s@e****l 411
hechth h****t@r****z 272
Faruk D f****n@e****l 230
Julian Pollmann j****n@h****e 155
Stefan Verhoeven s****n@g****m 115
maximskorik m****k@g****m 100
Zargham Ahmad z****2@g****m 75
Kia 5****r 47
hechth h****t@g****e 41
Christiaan Meijer c****r@e****l 22
roman-bushuiev r****1@g****m 19
Simon Rogers s****s@g****m 17
tornikeo t****i@g****m 17
efrain2010 e****3@g****m 15
github-actions[bot] g****] 13
Niek de Jonge n****e@e****l 11
Cunliang Geng c****g@e****l 10
al-pi314 a****a@g****m 7
acquayefrank a****k@g****m 6
Adriano Rutz a****z@h****m 6
Kevin Zielke k****e@y****e 5
dependabot[bot] 4****] 4
coli l****n@e****h 4
bernardolk b****s@g****m 3
PMA p****d@u****h 3
wverastegui w****r@g****m 2
Wasim Sandhu w****u@a****m 2
Marco Visani 9****i 2
and 7 more...

Issues and Pull Requests

Last synced: 4 months ago

All Time
  • Total issues: 263
  • Total pull requests: 386
  • Average time to close issues: 11 months
  • Average time to close pull requests: 24 days
  • Total issue authors: 48
  • Total pull request authors: 21
  • Average comments per issue: 2.51
  • Average comments per pull request: 1.4
  • Merged pull requests: 296
  • Bot issues: 0
  • Bot pull requests: 8
Past Year
  • Issues: 62
  • Pull requests: 117
  • Average time to close issues: 22 days
  • Average time to close pull requests: 9 days
  • Issue authors: 19
  • Pull request authors: 14
  • Average comments per issue: 0.65
  • Average comments per pull request: 1.79
  • Merged pull requests: 77
  • Bot issues: 0
  • Bot pull requests: 8
Top Authors
Issue Authors
  • florian-huber (79)
  • niekdejonge (55)
  • hechth (47)
  • julianpollmann (9)
  • tornikeo (5)
  • Adafede (5)
  • jspaaks (5)
  • maximskorik (4)
  • 1641004802 (4)
  • sverhoeven (4)
  • jmmitc06 (3)
  • ctapobep (2)
  • chanana (2)
  • mmzdouc (2)
  • anupriyatripathi (2)
Pull Request Authors
  • niekdejonge (132)
  • florian-huber (70)
  • julianpollmann (56)
  • hechth (27)
  • tornikeo (26)
  • zargham-ahmad (18)
  • dependabot[bot] (8)
  • maximskorik (7)
  • Adafede (7)
  • acquayefrank (6)
  • Knerten0815 (6)
  • lionel42 (6)
  • roman-bushuiev (4)
  • oolonek (2)
  • wasimsandhu (2)
Top Labels
Issue Labels
stale (61) bug (19) enhancement (12) future developments (8) package quality (7) performance (6) documentation (6) good first issue (3) workshop 2025 (2) matchms_1_0 (2) question (1) discussion (1)
Pull Request Labels
dependencies (8) python (8) enhancement (1) performance (1) help wanted (1)

Packages

  • Total packages: 1
  • Total downloads:
    • pypi 24,418 last-month
  • Total docker downloads: 250,177
  • Total dependent packages: 10
  • Total dependent repositories: 26
  • Total versions: 44
  • Total maintainers: 1
pypi.org: matchms

Python library for large-scale comparisons and processing of tandem mass spectral data

  • Versions: 44
  • Dependent Packages: 10
  • Dependent Repositories: 26
  • Downloads: 24,418 Last month
  • Docker Downloads: 250,177
Rankings
Docker downloads count: 1.0%
Dependent packages count: 1.1%
Dependent repos count: 2.8%
Average: 3.5%
Downloads: 3.9%
Stargazers count: 6.0%
Forks count: 6.0%
Maintainers (1)
Last synced: 4 months ago

Dependencies

.github/workflows/CI_build.yml actions
  • actions/checkout v2 composite
  • actions/setup-python v1 composite
  • actions/upload-artifact v2 composite
  • conda-incubator/setup-miniconda v2 composite
.github/workflows/CI_publish_pypi.yml actions
  • actions/checkout v2 composite
  • actions/setup-python v1 composite
  • pypa/gh-action-pypi-publish master composite
.github/workflows/SonarCloud.yml actions
  • actions/checkout v3 composite
  • dawidd6/action-download-artifact v2 composite
  • sonarsource/sonarcloud-github-action master composite
.github/workflows/CI_first_code_check.yml actions
  • actions/checkout v3 composite
  • actions/setup-python v2 composite
  • actions/upload-artifact v3 composite
pyproject.toml pypi
  • deprecated ^1.2.14
  • lxml ^4.9.3
  • matplotlib ^3.7.2
  • networkx ^3.1
  • numba ^0.57.1
  • numpy <1.25
  • pandas ^2.0.3
  • pickydict ^0.4.0
  • pillow !=9.4.0
  • pubchempy *
  • pyteomics ^4.6
  • python >=3.8,<3.13
  • pyyaml ^6.0.1
  • rdkit ^2023.3.2
  • requests ^2.31.0
  • scipy <1.11
  • sparsestack ^0.4.1
  • tqdm ^4.65.0