https://github.com/disi-unibo-nlp/easumm
[DATA22 and Springer LNCS] Graph-Enhanced Biomedical Abstractive Summarization via Factual Evidence Extraction
Science Score: 13.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
○CITATION.cff file
-
○codemeta.json file
-
○.zenodo.json file
-
✓DOI references
Found 3 DOI reference(s) in README -
○Academic publication links
-
○Academic email domains
-
○Institutional organization owner
-
○JOSS paper metadata
-
○Scientific vocabulary similarity
Low similarity (8.7%) to scientific vocabulary
Keywords
abstractive-summarization
event-extraction
knowledge-infusion
language-model
nlp
nlu
Last synced: 4 months ago
·
JSON representation
Repository
[DATA22 and Springer LNCS] Graph-Enhanced Biomedical Abstractive Summarization via Factual Evidence Extraction
Basic Info
Statistics
- Stars: 2
- Watchers: 1
- Forks: 0
- Open Issues: 0
- Releases: 0
Topics
abstractive-summarization
event-extraction
knowledge-infusion
language-model
nlp
nlu
Created over 3 years ago
· Last pushed over 3 years ago
https://github.com/disi-unibo-nlp/easumm/blob/master/
# EASumm ## Overview Code and data accompanying the paper ["Graph-Enhanced Biomedical Abstractive Summarization via Factual Evidence Extraction"](todo), extended by ["Enhancing Biomedical Scientific Reviews Summarization with Graph-based Factual Evidence Extracted from Papers"](https://www.scitepress.org/PublicationsDetail.aspx?ID=/jornliCVuw=&t=1) (Best Studen Paper Award @ DATA22). EASumm is the first abstractive summarization model augmenting source documents with explicit, structured medical evidence extracted from them, thereby concretizing a tandem text-graph architecture.## Install requirements ``` pip install -r requirements.txt pip install torch==1.10.0+cu113 -f https://download.pytorch.org/whl/cu113/torch_stable.html pip install torch-scatter -f https://data.pyg.org/whl/torch-1.10.0+cu113.html pip install torch-sparse -f https://data.pyg.org/whl/torch-1.10.0+cu113.html pip install torch-geometric ``` ## Download events extracted with DeepEventMine ``` cd deep_event_mine gdown 1x3oHfAKdtYfTEKuLPFTV_b2foA-VEMSx ``` ## Train our model ``` python train_abstractor.py --wandb_log ``` ## Decode ``` python decode_abstractor.py --model_dir ckpts ``` ## Evaluate Download ROUGE-1.5.5 and tell pyrouge the ROUGE path ``` gdown 1Df0FY4k-EGbvOlIBk2-Ih7J5N5ss-Ko4 tar -xvf ROUGE.tar.gz rm ROUGE.tar.gz pyrouge_set_rouge_path $(pwd)/ROUGE ``` ``` python eval_full_model.py --decode_dir ckpts ``` ## Contacts * Giacomo Frisoni, [giacomo.frisoni[at]unibo.it](mailto:giacomo.frisoni@unibo.it) * Paolo Italiani, [paolo.italiani[at]studio.unibo.it](mailto:paolo.italiani@unibo.it) * Gianluca Moro, [gianluca.moro[at]unibo.it](mailto:gianluca.moro@unibo.it) If you have troubles, suggestions, or ideas, the [Discussion](https://github.com/disi-unibo-nlp/easumm/discussions) board might have some relevant information. If not, you can post your questions there . ## License This project is released under the CC-BY-NC-SA 4.0 license (see `LICENSE`). ## Cite If you use EASumm in your research, please cite: @inproceedings{DBLP:conf/data/FrisoniIBM22, author = {Giacomo Frisoni and Paolo Italiani and Francesco Boschi and Gianluca Moro}, editor = {Alfredo Cuzzocrea and Oleg Gusikhin and Wil M. P. van der Aalst and Slimane Hammoudi}, title = {Enhancing Biomedical Scientific Reviews Summarization with Graph-based Factual Evidence Extracted from Papers}, booktitle = {Proceedings of the 11th International Conference on Data Science, Technology and Applications, {DATA} 2022, Lisbon, Portugal, July 11-13, 2022}, pages = {168--179}, publisher = {{SCITEPRESS}}, year = {2022}, url = {https://doi.org/10.5220/0011354900003269}, doi = {10.5220/0011354900003269}, timestamp = {Wed, 03 Aug 2022 15:53:22 +0200}, biburl = {https://dblp.org/rec/conf/data/FrisoniIBM22.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} }
![]()
Owner
- Name: DISI UniBo NLP
- Login: disi-unibo-nlp
- Kind: user
- Location: Italy
- Website: https://disi-unibo-nlp.github.io/
- Repositories: 20
- Profile: https://github.com/disi-unibo-nlp
NLU Research Group @ University of Bologna @ Department of Computer Science and Engineering (DISI)