https://github.com/disi-unibo-nlp/easumm

[DATA22 and Springer LNCS] Graph-Enhanced Biomedical Abstractive Summarization via Factual Evidence Extraction

https://github.com/disi-unibo-nlp/easumm

Science Score: 13.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
  • codemeta.json file
  • .zenodo.json file
  • DOI references
    Found 3 DOI reference(s) in README
  • Academic publication links
  • Academic email domains
  • Institutional organization owner
  • JOSS paper metadata
  • Scientific vocabulary similarity
    Low similarity (8.7%) to scientific vocabulary

Keywords

abstractive-summarization event-extraction knowledge-infusion language-model nlp nlu
Last synced: 4 months ago · JSON representation

Repository

[DATA22 and Springer LNCS] Graph-Enhanced Biomedical Abstractive Summarization via Factual Evidence Extraction

Basic Info
  • Host: GitHub
  • Owner: disi-unibo-nlp
  • License: other
  • Language: Python
  • Default Branch: master
  • Homepage:
  • Size: 12.3 MB
Statistics
  • Stars: 2
  • Watchers: 1
  • Forks: 0
  • Open Issues: 0
  • Releases: 0
Topics
abstractive-summarization event-extraction knowledge-infusion language-model nlp nlu
Created over 3 years ago · Last pushed over 3 years ago

https://github.com/disi-unibo-nlp/easumm/blob/master/

# EASumm




## Overview

Code and data accompanying the paper ["Graph-Enhanced Biomedical Abstractive Summarization via Factual Evidence Extraction"](todo), extended by ["Enhancing Biomedical Scientific Reviews Summarization with Graph-based Factual Evidence Extracted from Papers"](https://www.scitepress.org/PublicationsDetail.aspx?ID=/jornliCVuw=&t=1) (Best Studen Paper Award @ DATA22).

EASumm is the first abstractive summarization model augmenting source documents with explicit, structured medical evidence extracted from them, thereby concretizing a tandem text-graph architecture.

EASumm architecture overview

## Install requirements ``` pip install -r requirements.txt pip install torch==1.10.0+cu113 -f https://download.pytorch.org/whl/cu113/torch_stable.html pip install torch-scatter -f https://data.pyg.org/whl/torch-1.10.0+cu113.html pip install torch-sparse -f https://data.pyg.org/whl/torch-1.10.0+cu113.html pip install torch-geometric ``` ## Download events extracted with DeepEventMine ``` cd deep_event_mine gdown 1x3oHfAKdtYfTEKuLPFTV_b2foA-VEMSx ``` ## Train our model ``` python train_abstractor.py --wandb_log ``` ## Decode ``` python decode_abstractor.py --model_dir ckpts ``` ## Evaluate Download ROUGE-1.5.5 and tell pyrouge the ROUGE path ``` gdown 1Df0FY4k-EGbvOlIBk2-Ih7J5N5ss-Ko4 tar -xvf ROUGE.tar.gz rm ROUGE.tar.gz pyrouge_set_rouge_path $(pwd)/ROUGE ``` ``` python eval_full_model.py --decode_dir ckpts ``` ## Contacts * Giacomo Frisoni, [giacomo.frisoni[at]unibo.it](mailto:giacomo.frisoni@unibo.it) * Paolo Italiani, [paolo.italiani[at]studio.unibo.it](mailto:paolo.italiani@unibo.it) * Gianluca Moro, [gianluca.moro[at]unibo.it](mailto:gianluca.moro@unibo.it) If you have troubles, suggestions, or ideas, the [Discussion](https://github.com/disi-unibo-nlp/easumm/discussions) board might have some relevant information. If not, you can post your questions there . ## License This project is released under the CC-BY-NC-SA 4.0 license (see `LICENSE`). ## Cite If you use EASumm in your research, please cite: @inproceedings{DBLP:conf/data/FrisoniIBM22, author = {Giacomo Frisoni and Paolo Italiani and Francesco Boschi and Gianluca Moro}, editor = {Alfredo Cuzzocrea and Oleg Gusikhin and Wil M. P. van der Aalst and Slimane Hammoudi}, title = {Enhancing Biomedical Scientific Reviews Summarization with Graph-based Factual Evidence Extracted from Papers}, booktitle = {Proceedings of the 11th International Conference on Data Science, Technology and Applications, {DATA} 2022, Lisbon, Portugal, July 11-13, 2022}, pages = {168--179}, publisher = {{SCITEPRESS}}, year = {2022}, url = {https://doi.org/10.5220/0011354900003269}, doi = {10.5220/0011354900003269}, timestamp = {Wed, 03 Aug 2022 15:53:22 +0200}, biburl = {https://dblp.org/rec/conf/data/FrisoniIBM22.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} }

Owner

  • Name: DISI UniBo NLP
  • Login: disi-unibo-nlp
  • Kind: user
  • Location: Italy

NLU Research Group @ University of Bologna @ Department of Computer Science and Engineering (DISI)

GitHub Events

Total
Last Year