Recent Releases of maestro-x
maestro-x - TCCN
IEEE TCCN 2023 | MAESTRO-X: Distributed Orchestration of Rotary-Wing UAV-Relay Swarms
This work details a scalable framework to orchestrate a swarm of rotary-wing UAVs serving as cellular relays to facilitate beyond line-of-sight connectivity and traffic offloading for ground users. First, a Multiscale Adaptive Energy-conscious Scheduling and TRajectory Optimization (MAESTRO) framework is developed for a single UAV. Aiming to minimize the time-averaged latency to serve user requests, subject to an average UAV power constraint, it is shown that the optimization problem can be cast as a semi-Markov decision process, and exhibits a multiscale structure: outer actions on radial wait velocities and terminal service positions minimize the long-term delay-power trade-off, optimized via value iteration; given these outer actions, inner actions on angular wait velocities and service trajectories minimize a short-term delay-energy cost; finally, rate adaptation is embedded along the trajectory to leverage air-to-ground channel propagation conditions. A novel hierarchical competitive swarm optimization scheme is developed in the inner optimization, to devise high-resolution trajectories via iterative pair-wise updates. Next, MAESTRO is eXtended to UAV swarms (MAESTRO-X) via scalable policy replication, enabled by a decentralized command-and-control network augmented with: spread maximization to proactively position UAVs to serve future requests; consensus-driven conflict resolution to orchestrate scheduling decisions based on delay-energy costs including queuing dynamics; adaptive frequency reuse to improve spectrum utilization across the network; and a piggybacking mechanism allowing UAVs to serve multiple ground users simultaneously.
- Python
Published by bharathkeshavamurthy about 3 years ago
maestro-x - ASILOMAR
ASILOMAR 2022 | Multiscale Adaptive Scheduling and Path-Planning for Power-Constrained UAV-Relays via SMDPs
We describe the orchestration of a decentralized swarm of rotary-wing UAV-relays, augmenting the coverage and service capabilities of a terrestrial base station. Our goal is to minimize the time-average service latencies involved in handling transmission requests from ground users under Poisson arrivals, subject to an average UAV power constraint. Equipped with rate adaptation to efficiently leverage air-to-ground stochastics, we first derive the optimal control policy for a single relay via a semi-Markov decision process formulation, with competitive swarm optimization for UAV trajectory design. Accordingly, we detail a multiscale decomposition of this construction: outer decisions on radial wait velocities and end positions optimize the expected long-term delay-power trade-off; consequently, inner decisions on angular wait velocities, service schedules, and UAV trajectories greedily minimize the instantaneous delay-power costs. Next, generalizing to UAV swarms via replication and consensus-driven command-and-control, this policy is embedded with spread maximization and conflict resolution heuristics.
- Python
Published by bharathkeshavamurthy almost 4 years ago