Pubmed Parser

Pubmed Parser: A Python Parser for PubMed Open-Access XML Subset and MEDLINE XML Dataset XML Dataset - Published in JOSS (2020)

https://github.com/titipata/pubmed_parser

Science Score: 100.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
    Found CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
    Found .zenodo.json file
  • DOI references
    Found 13 DOI reference(s) in README and JOSS metadata
  • Academic publication links
    Links to: ncbi.nlm.nih.gov, science.org, joss.theoj.org, zenodo.org
  • Committers with academic emails
    7 of 39 committers (17.9%) from academic institutions
  • Institutional organization owner
  • JOSS paper metadata
    Published in Journal of Open Source Software

Keywords

article doi medline-xml nlp parse parser pmid pubmed-central pubmed-parser python xml
Last synced: 4 months ago · JSON representation ·

Repository

:clipboard: A Python Parser for PubMed Open-Access XML Subset and MEDLINE XML Dataset

Basic Info
Statistics
  • Stars: 691
  • Watchers: 21
  • Forks: 177
  • Open Issues: 14
  • Releases: 8
Topics
article doi medline-xml nlp parse parser pmid pubmed-central pubmed-parser python xml
Created almost 11 years ago · Last pushed 5 months ago
Metadata Files
Readme Contributing License Citation

README.md

Pubmed Parser: A Python Parser for PubMed Open-Access XML Subset and MEDLINE XML Dataset

License DOI DOI Build Status

Pubmed Parser is a Python library for parsing the PubMed Open-Access (OA) subset , MEDLINE XML repositories, and Entrez Programming Utilities (E-utils). It uses the lxml library to parse this information into a Python dictionary which can be easily used for research, such as in text mining and natural language processing pipelines.

For available APIs and details about the dataset, please see our wiki page or documentation page for more details. Below, we list some of the core funtionalities and code examples.

Available Parsers

  • path provided to a function can be the path to a compressed or uncompressed XML file. We provide example files in the data folder.
  • for website parsing, you should scrape with pause. Please see the copyright notice because your IP can get blocked if you try to download in bulk.

Below, we list available parsers from pubmed_parser.

Parse PubMed OA XML information

We created a simple parser for the PubMed Open Access Subset where you can give an XML path or string to the function called parse_pubmed_xml which will return a dictionary with the following information:

  • full_title : article's title
  • abstract : abstract
  • journal : Journal name
  • pmid : PubMed ID
  • pmc : PubMed Central ID
  • doi : DOI of the article
  • publisher_id : publisher ID
  • author_list : list of authors with affiliation keys in the following format

python [['last_name_1', 'first_name_1', 'aff_key_1'], ['last_name_1', 'first_name_1', 'aff_key_2'], ['last_name_2', 'first_name_2', 'aff_key_1'], ...]

  • affiliation_list : list of affiliation keys and affiliation strings in the following format

python [['aff_key_1', 'affiliation_1'], ['aff_key_2', 'affiliation_2'], ...]

  • publication_year : publication year
  • subjects : list of subjects listed in the article separated by semicolon. Sometimes, it only contains the type of the article, such as a research article, review proceedings, etc.

python import pubmed_parser as pp dict_out = pp.parse_pubmed_xml(path)

Parse PubMed OA citation references

The function parse_pubmed_references will process a Pubmed Open Access XML file and return a list of the PMIDs it cites. Each dictionary has keys as follows

  • pmid : PubMed ID of the article
  • pmc : PubMed Central ID of the article
  • article_title : title of cited article
  • journal : journal name
  • journal_type : type of journal
  • pmid_cited : PubMed ID of article that article cites
  • doi_cited : DOI of article that article cites
  • year : Publication year as it appears in the reference (may include letter suffix, e.g.2007a)

python dicts_out = pp.parse_pubmed_references(path) # return list of dictionary

Parse PubMed OA images and captions

The function parse_pubmed_caption can parse image captions from a given path to XML file. It will return reference index that you can refer back to actual images. The function will return list of dictionary which has following keys

  • pmid : PubMed ID
  • pmc : PubMed Central ID
  • fig_caption : string of caption
  • fig_id : reference id for figure (use to refer in XML article)
  • fig_label : label of the figure
  • graphic_ref : reference to image file name provided from Pubmed OA

python dicts_out = pp.parse_pubmed_caption(path) # return list of dictionary

Parse PubMed OA Paragraph

For someone who might be interested in parsing the text surrounding a citation, the library also provides that functionality. You can use parse_pubmed_paragraph to parse text and reference PMIDs. This function will return a list of dictionaries, where each entry will have following keys:

  • pmid : PubMed ID
  • pmc : PubMed Central ID
  • text : full text of the paragraph
  • reference_ids : list of reference code within that paragraph.

This IDs can merge with output from parse_pubmed_references .

  • section : section of paragraph (e.g. Background, Discussion, Appendix, etc.)

python dicts_out = pp.parse_pubmed_paragraph('data/6605965a.nxml', all_paragraph=False)

Parse PubMed OA Table [WIP]

You can use parse_pubmed_table to parse table from XML file. This function will return list of dictionaries where each has following keys.

  • pmid : PubMed ID
  • pmc : PubMed Central ID
  • caption : caption of the table
  • label : lable of the table
  • table_columns : list of column name
  • table_values : list of values inside the table
  • table_xml : raw xml text of the table (return if return_xml=True)

python dicts_out = pp.parse_pubmed_table('data/medline16n0902.xml.gz', return_xml=False)

Parse MEDLINE XML

MEDLINE XML has a different XML format than PubMed Open Access. The structure of XML files can be found in MEDLINE/PubMed DTD here. You can use the function parse_medline_xml to parse that format. This function will return list of dictionaries, where each element contains:

  • pmid : PubMed ID
  • pmc : PubMed Central ID
  • doi : DOI
  • other_id : Other IDs found, each separated by ;
  • title : title of the article
  • abstract : abstract of the article
  • authors : authors, each separated by ;
  • mesh_terms : list of MeSH terms with corresponding MeSH ID, each separated by ; e.g. 'D000161:Acoustic Stimulation; D000328:Adult; ...
  • publication_types : list of publication type list each separated by ; e.g. 'D016428:Journal Article'
  • keywords : list of keywords, each separated by ;
  • chemical_list : list of chemical terms, each separated by ;
  • pubdate : Publication date. Defaults to year information only.
  • journal : journal of the given paper
  • medline_ta : this is abbreviation of the journal name
  • nlm_unique_id : NLM unique identification
  • issn_linking : ISSN linkage, typically use to link with Web of Science dataset
  • country : Country extracted from journal information field
  • reference : string of PMID each separated by ; or list of references made to the article
  • delete : boolean if False means paper got updated so you might have two
  • languages : list of languages, separated by ;
  • vernacular_title: vernacular title. Defaults to empty string whenever non-available.

XMLs for the same paper. You can delete the record of deleted paper because it got updated.

python dicts_out = pp.parse_medline_xml('data/medline16n0902.xml.gz', year_info_only=False, nlm_category=False, author_list=False, reference_list=False) # return list of dictionary

To extract month and day information from PubDate, set year_info_only=True. We also allow parsing structured abstract and we can control display of each section or label by changing nlm_category argument.

Parse MEDLINE Grant ID

Use parse_grant_id in order to parse MEDLINE grant IDs from XML file. This will return a list of dictionaries, each containing

  • pmid : PubMed ID
  • grant_id : Grant ID
  • grant_acronym : Acronym of grant
  • country : Country where grant funding from
  • agency : Grant agency

If no Grant ID is found, it will return None

Parse MEDLINE XML from eutils website

You can use PubMed parser to parse XML file from E-Utilities using parse_xml_web . For this function, you can provide a single pmid as an input and get a dictionary with following keys

  • title : title
  • abstract : abstract
  • journal : journal
  • affiliation : affiliation of first author
  • authors : string of authors, separated by ;
  • year : Publication year
  • keywords : keywords or MESH terms of the article

python dict_out = pp.parse_xml_web(pmid, save_xml=False)

Parse MEDLINE XML citations from website

The function parse_citation_web allows you to get the citations to a given PubMed ID or PubMed Central ID. This will return a dictionary which contains the following keys

  • pmc : PubMed Central ID
  • pmid : PubMed ID
  • doi : DOI of the article
  • n_citations : number of citations for given articles
  • pmc_cited : list of PMCs that cite the given PMC

python dict_out = pp.parse_citation_web(doc_id, id_type='PMC')

Parse Outgoing XML citations from website

The function parse_outgoing_citation_web allows you to get the articles a given article cites, given a PubMed ID or PubMed Central ID. This will return a dictionary which contains the following keys

  • n_citations : number of cited articles
  • doc_id : the document identifier given
  • id_type : the type of identifier given. Either 'PMID' or 'PMC'
  • pmid_cited : list of PMIDs cited by the article

python dict_out = pp.parse_outgoing_citation_web(doc_id, id_type='PMID')

Identifiers should be passed as strings. PubMed Central ID's are default, and should be passed as strings without the 'PMC' prefix. If no citations are found, or if no article is found matching doc_id in the indicated database, it will return None.

Installation

You can install the most update version of the package directly from the repository

bash pip install git+https://github.com/titipata/pubmed_parser.git

or install recent release with PyPI using

bash pip install pubmed-parser

or clone the repository and install using pip

bash git clone https://github.com/titipata/pubmed_parser pip install ./pubmed_parser

You can test your installation by running pytest --cov=pubmed_parser tests/ --verbose in the root of the repository.

Example snippet to parse PubMed OA dataset

An example usage is shown as follows

``` python import pubmedparser as pp pathxml = pp.listxmlpath('data') # list all xml paths under directory pubmeddict = pp.parsepubmedxml(pathxml[0]) # dictionary output print(pubmed_dict)

{'abstract': u"Background Despite identical genotypes and ...", 'affiliationlist': [['I1': 'Department of Biological Sciences, ...'], ['I2': 'Biology Department, Queens College, and the Graduate Center ...']], 'authorlist': [['Dennehy', 'John J', 'I1'], ['Dennehy', 'John J', 'I2'], ['Wang', 'Ing-Nang', 'I1']], 'fulltitle': u'Factors influencing lysis time stochasticity in bacteriophage \u03bb', 'journal': 'BMC Microbiology', 'pmc': '3166277', 'pmid': '21810267', 'publicationyear': '2011', 'publisher_id': '1471-2180-11-174', 'subjects': 'Research Article'} ```

Example Usage with PySpark

This is a snippet to parse all PubMed Open Access subset using PySpark 2.1

``` python import os import pubmed_parser as pp from pyspark.sql import Row

pathall = pp.listxmlpath('/path/to/xml/folder/') pathrdd = spark.sparkContext.parallelize(pathall, numSlices=10000) parseresultsrdd = pathrdd.map(lambda x: Row(filename=os.path.basename(x), **pp.parsepubmedxml(x))) pubmedoadf = parseresultsrdd.toDF() # Spark dataframe pubmedoadfsel = pubmedoadf[['fulltitle', 'abstract', 'doi', 'filename', 'pmc', 'pmid', 'publicationyear', 'publisherid', 'journal', 'subjects']] # select columns pubmedoadfsel.write.parquet('pubmedoa.parquet', mode='overwrite') # write dataframe ```

See scripts folder for more information.

Core Members

and contributors

Dependencies

Citation

If you use Pubmed Parser, please cite it from JOSS as follows

Achakulvisut et al., (2020). Pubmed Parser: A Python Parser for PubMed Open-Access XML Subset and MEDLINE XML Dataset XML Dataset. Journal of Open Source Software, 5(46), 1979, https://doi.org/10.21105/joss.01979

or using BibTex

@article{Achakulvisut2020, doi = {10.21105/joss.01979}, url = {https://doi.org/10.21105/joss.01979}, year = {2020}, publisher = {The Open Journal}, volume = {5}, number = {46}, pages = {1979}, author = {Titipat Achakulvisut and Daniel Acuna and Konrad Kording}, title = {Pubmed Parser: A Python Parser for PubMed Open-Access XML Subset and MEDLINE XML Dataset XML Dataset}, journal = {Journal of Open Source Software} }

Contributions

We welcome contributions from anyone who would like to improve Pubmed Parser. You can create GitHub issues to discuss questions or issues relating to the repository. We suggest you to read our Contributing Guidelines before creating issues, reporting bugs, or making a contribution to the repository.

Acknowledgement

This package is developed in Konrad Kording's Lab at the University of Pennsylvania. We would like to thank reviewers and the editor from JOSS including tleonardi, timClicks, and majensen. They made our repository much better!

License

MIT License Copyright (c) 2015-2020 Titipat Achakulvisut, Daniel E. Acuna

Owner

  • Name: Titipat Achakulvisut
  • Login: titipata
  • Kind: user
  • Location: Bangkok, Thailand
  • Company: Mahidol University

Applied ML & Science of Science @biodatlab Mahidol University | Former @KordingLab UPenn, intern @allenai, organizer/co-founder @neuromatch

JOSS Publication

Pubmed Parser: A Python Parser for PubMed Open-Access XML Subset and MEDLINE XML Dataset XML Dataset
Published
February 08, 2020
Volume 5, Issue 46, Page 1979
Authors
Titipat Achakulvisut
University of Pennsylvania
Daniel E. Acuna
Syracuse University
Konrad Kording
University of Pennsylvania
Editor
Mark A. Jensen ORCID
Tags
MEDLINE PubMed Biomedical corpus Natural Language Processing

Citation (CITATION.cff)

cff-version: 1.2.0
message: "Citation for Pubmed Parser library"
authors:
  - family-names: Achakulvisut
    given-names: Titipat
  - family-names: Acuna
    given-names: Daniel
  - family-names: Kording
    given-names: Konrad
title: "Pubmed Parser: A Python Parser for PubMed Open-Access XML Subset and MEDLINE XML Dataset XML Dataset"
date-released: 2019-12-15
doi: 10.21105/joss.01979
url: https://github.com/titipata/pubmed_parser
preferred-citation:
  type: article
  authors:
    - family-names: Achakulvisut
      given-names: Titipat
    - family-names: Acuna
      given-names: Daniel
    - family-names: Kording
      given-names: Konrad
  doi: 10.21105/joss.01979
  journal: "Journal of Open Source Software"
  publisher: The Open Journal
  month: 9
  year: 2020
  number: 46
  volume: 5
  start: 1979
  title: "Pubmed Parser: A Python Parser for PubMed Open-Access XML Subset and MEDLINE XML Dataset XML Dataset"
  url: https://doi.org/10.21105/joss.01979
  

GitHub Events

Total
  • Issues event: 8
  • Watch event: 99
  • Issue comment event: 22
  • Push event: 19
  • Pull request review event: 5
  • Pull request review comment event: 1
  • Pull request event: 10
  • Fork event: 9
Last Year
  • Issues event: 8
  • Watch event: 99
  • Issue comment event: 22
  • Push event: 19
  • Pull request review event: 5
  • Pull request review comment event: 1
  • Pull request event: 10
  • Fork event: 9

Committers

Last synced: 5 months ago

All Time
  • Total Commits: 322
  • Total Committers: 39
  • Avg Commits per committer: 8.256
  • Development Distribution Score (DDS): 0.689
Past Year
  • Commits: 17
  • Committers: 7
  • Avg Commits per committer: 2.429
  • Development Distribution Score (DDS): 0.471
Top Committers
Name Email Commits
titipata t****a@u****u 100
titipata m****t@g****m 94
Nils Herrmann n****8@l****x 24
Ray Pereda r****a@g****m 11
Daniel Acuna d****a@s****u 10
Michael E. Rose M****e@g****m 9
tulakann t****r@g****m 8
Daniel Acuna d****a@n****u 7
titipata t****a@a****g 7
Ted Cybulski t****i@g****m 6
Simon Wörpel s****l@m****e 6
Tommaso Leonardi t****m@i****z 4
Kevin Henner k****r 3
Daniel Mietchen d****n@g****m 2
Julien Tourille j****e@g****m 2
Mark A. Jensen m****t@f****s 2
TariqAHassan t****n@g****m 2
Tiansu t****0@i****m 2
jim z****3@s****u 2
patrusso2 p****2@g****m 2
tanganyao t****9@1****m 1
iacopo i****y 1
ZhangWoW123 1****3 1
Ray Pereda r****a@G****e 1
Ubuntu u****u@i****l 1
titipata t****a@u****u 1
Vincent Batts v****s@h****m 1
Thomas Pan t****n@g****m 1
The Gitter Badger b****r@g****m 1
Sean Davis s****i@g****m 1
and 9 more...

Issues and Pull Requests

Last synced: 4 months ago

All Time
  • Total issues: 87
  • Total pull requests: 56
  • Average time to close issues: 8 months
  • Average time to close pull requests: 13 days
  • Total issue authors: 52
  • Total pull request authors: 29
  • Average comments per issue: 2.99
  • Average comments per pull request: 1.02
  • Merged pull requests: 49
  • Bot issues: 0
  • Bot pull requests: 0
Past Year
  • Issues: 12
  • Pull requests: 9
  • Average time to close issues: about 1 month
  • Average time to close pull requests: 9 days
  • Issue authors: 8
  • Pull request authors: 5
  • Average comments per issue: 2.67
  • Average comments per pull request: 0.33
  • Merged pull requests: 7
  • Bot issues: 0
  • Bot pull requests: 0
Top Authors
Issue Authors
  • titipata (14)
  • deakkon (6)
  • nils-herrmann (5)
  • tleonardi (5)
  • uludag (2)
  • shrimonmuke0202 (2)
  • ZhangWoW123 (2)
  • Michael-E-Rose (2)
  • ghost (2)
  • qm-intel (2)
  • octotus (2)
  • callebalik (2)
  • soupstandstop (1)
  • schnobi1990 (1)
  • RengarAndKhz (1)
Pull Request Authors
  • nils-herrmann (31)
  • titipata (4)
  • kjhenner (3)
  • patrusso2 (2)
  • ZhangWoW123 (2)
  • tleonardi (2)
  • thomascpan (2)
  • jtourille (2)
  • enjalot (2)
  • iacopy (2)
  • raypereda (2)
  • Daniel-Mietchen (2)
  • zyi103 (2)
  • ethandrower (1)
  • grivaz (1)
Top Labels
Issue Labels
bug (22) enhancement (11) question (5) help wanted (4) invalid (2) feature request (1) duplicate (1)
Pull Request Labels

Packages

  • Total packages: 1
  • Total downloads:
    • pypi 3,572 last-month
  • Total docker downloads: 5,783
  • Total dependent packages: 1
  • Total dependent repositories: 4
  • Total versions: 5
  • Total maintainers: 1
pypi.org: pubmed-parser

A python parser for Pubmed Open-Access Subset and MEDLINE XML repository

  • Versions: 5
  • Dependent Packages: 1
  • Dependent Repositories: 4
  • Downloads: 3,572 Last month
  • Docker Downloads: 5,783
Rankings
Docker downloads count: 1.6%
Stargazers count: 2.8%
Forks count: 4.0%
Average: 4.3%
Dependent packages count: 4.7%
Downloads: 5.2%
Dependent repos count: 7.5%
Maintainers (1)
Last synced: 4 months ago

Dependencies

docs/doc_requirements.txt pypi
  • sphinx *
  • sphinx-gallery *
  • sphinx_rtd_theme *
requirements.txt pypi
  • lxml *
  • numpy *
  • pytest *
  • pytest-cov *
  • requests *
  • six *
  • unidecode *
setup.py pypi
  • lxml *
  • numpy *
  • pytest *
  • pytest-cov *
  • requests *
  • six *
  • unidecode *