ppal
[CVPR 2024] Plug and Play Active Learning for Object Detection
Science Score: 54.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
✓CITATION.cff file
Found CITATION.cff file -
✓codemeta.json file
Found codemeta.json file -
✓.zenodo.json file
Found .zenodo.json file -
○DOI references
-
✓Academic publication links
Links to: arxiv.org -
○Academic email domains
-
○Institutional organization owner
-
○JOSS paper metadata
-
○Scientific vocabulary similarity
Low similarity (10.6%) to scientific vocabulary
Keywords
Repository
[CVPR 2024] Plug and Play Active Learning for Object Detection
Basic Info
Statistics
- Stars: 97
- Watchers: 5
- Forks: 13
- Open Issues: 17
- Releases: 0
Topics
Metadata Files
README.md
Plug and Play Active Learning for Object Detection
PyTorch implementation of our paper: Plug and Play Active Learning for Object Detection
Requirements
- Our codebase is built on top of MMDetection, which can be installed following the offcial instuctions.
Usage
Installation
shell
python setup.py install
Setup dataset
- Place your dataset as the following structure (Only vital files are shown). It should be easy because it's the default MMDetection data placement)
PPAL | `-- data | |--coco | | | |--train2017 | |--val2017 | `--annotations | | | |--instances_train2017.json | `--instances_val2017.json `-- VOCdevkit | |--VOC2007 | | | |--ImageSets | |--JPEGImages | `--Annotations `--VOC2012 |--ImageSets |--JPEGImages `--Annotations - For convenience, we use COCO style annotation for Pascal VOC active learning. Please download trainval_0712.json.
- Set up active learning datasets
shell zsh tools/al_data/data_setup.sh /path/to/trainval_0712.json - The above command will set up a new Pascal VOC data folder. It will also generate three different active learning initial annotations for both dataset, where the COCO initial sets contain 2% of the original annotated images, and the Pascal VOC initial sets contains 5% of the original annotated images.
- The resulted file structure is as following
PPAL | `-- data | |--coco | | | |--train2017 | |--val2017 | `--annotations | | | |--instances_train2017.json | `--instances_val2017.json |--VOCdevkit | | | |--VOC2007 | | | | | |--ImageSets | | |--JPEGImages | | `--Annotations | `--VOC2012 | |--ImageSets | |--JPEGImages | `--Annotations |--VOC0712 | | | |--images | |--annotations | | | `--trainval_0712.json `--active_learning | |--coco | | | |--coco_2365_labeled_1.json | |--coco_2365_unlabeled_1.json | |--coco_2365_labeled_2.json | |--coco_2365_unlabeled_2.json | |--coco_2365_labeled_3.json | `--coco_2365_unlabeled_3.json `--voc | |--voc_827_labeled_1.json |--voc_827_unlabeled_1.json |--voc_827_labeled_2.json |--voc_827_unlabeled_2.json |--voc_827_labeled_3.json `--voc_827_unlabeled_3.json - Please refer to data_setup.sh and createaldataset.py to generate you own active learning annotation. ### Run active learning
- You can run active learning using a single command with a config file. For example, you can run COCO and Pascal VOC RetinaNet experiments by
shell python tools/run_al_coco.py --config al_configs/coco/ppal_retinanet_coco.py --model retinanet python tools/run_al_voc.py --config al_configs/voc/ppal_retinanet_voc.py --model retinanet - Please check the config file to set up the data paths and environment settings before running the experiments. ## Citation
@InProceedings{yang2024ppal,
author = {{Yang, Chenhongyi and Huang, Lichao and Crowley, Elliot J.}},
title = {{Plug and Play Active Learning for Object Detection}},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
year = {2024}
}
Owner
- Name: Chenhongyi Yang
- Login: ChenhongyiYang
- Kind: user
- Location: Zurich, Switzerland
- Company: Meta
- Website: chenhongyiyang.com
- Repositories: 4
- Profile: https://github.com/ChenhongyiYang
Research Scientist at Meta Reality Labs
Citation (CITATION.cff)
cff-version: 1.2.0 message: "If you use this software, please cite it as below." authors: - name: "MMDetection Contributors" title: "OpenMMLab Detection Toolbox and Benchmark" date-released: 2018-08-22 url: "https://github.com/open-mmlab/mmdetection" license: Apache-2.0
GitHub Events
Total
- Issues event: 5
- Watch event: 19
- Issue comment event: 15
- Fork event: 9
Last Year
- Issues event: 5
- Watch event: 19
- Issue comment event: 15
- Fork event: 9
Issues and Pull Requests
Last synced: 6 months ago
All Time
- Total issues: 3
- Total pull requests: 0
- Average time to close issues: N/A
- Average time to close pull requests: N/A
- Total issue authors: 3
- Total pull request authors: 0
- Average comments per issue: 0.0
- Average comments per pull request: 0
- Merged pull requests: 0
- Bot issues: 0
- Bot pull requests: 0
Past Year
- Issues: 3
- Pull requests: 0
- Average time to close issues: N/A
- Average time to close pull requests: N/A
- Issue authors: 3
- Pull request authors: 0
- Average comments per issue: 0.0
- Average comments per pull request: 0
- Merged pull requests: 0
- Bot issues: 0
- Bot pull requests: 0
Top Authors
Issue Authors
- Ab-34 (2)
- wzhuo2022 (2)
- ZhenboZhao77 (1)
- Y-T-G (1)
- Zihan-Liu-westlake (1)
- upstream001 (1)
- mburges-cvl (1)
- sangeethnrs (1)
- Oussamayousre (1)
- geek-APTX4869 (1)
- TaiDuc1001 (1)
Pull Request Authors
Top Labels
Issue Labels
Pull Request Labels
Dependencies
- cython *
- numpy *
- docutils ==0.16.0
- recommonmark *
- sphinx ==4.0.2
- sphinx-copybutton *
- sphinx_markdown_tables *
- sphinx_rtd_theme ==0.5.2
- mmcv-full >=1.3.17
- cityscapesscripts *
- imagecorruptions *
- scipy *
- sklearn *
- mmcv *
- torch *
- torchvision *
- matplotlib *
- numpy *
- pycocotools *
- six *
- terminaltables *
- asynctest * test
- codecov * test
- flake8 * test
- interrogate * test
- isort ==4.3.21 test
- kwarray * test
- onnx ==1.7.0 test
- onnxruntime >=1.8.0 test
- pytest * test
- ubelt * test
- xdoctest >=0.10.0 test
- yapf * test