gsta

GSTA: Gated Spatial-Temporal Attention Approach for Travel Time Prediction

https://github.com/khaledalkilane89/gsta

Science Score: 57.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
    Found CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
    Found .zenodo.json file
  • DOI references
    Found 5 DOI reference(s) in README
  • Academic publication links
  • Academic email domains
  • Institutional organization owner
  • JOSS paper metadata
  • Scientific vocabulary similarity
    Low similarity (10.1%) to scientific vocabulary

Keywords

attention-mechanism deep-learning feature-selection gated-attention gated-neural-network travel-time-prediction
Last synced: 6 months ago · JSON representation ·

Repository

GSTA: Gated Spatial-Temporal Attention Approach for Travel Time Prediction

Basic Info
  • Host: GitHub
  • Owner: KhaledAlkilane89
  • License: mit
  • Language: Jupyter Notebook
  • Default Branch: master
  • Homepage:
  • Size: 46.8 MB
Statistics
  • Stars: 6
  • Watchers: 1
  • Forks: 1
  • Open Issues: 0
  • Releases: 0
Topics
attention-mechanism deep-learning feature-selection gated-attention gated-neural-network travel-time-prediction
Created about 6 years ago · Last pushed over 4 years ago
Metadata Files
Readme License Citation

README.md

GSTA

GSTA Architecture

Spatial-temporal Attention

Spatial-Temporal_Attention

Data

  • A sample of 81K trips is provided for each of the NYC and Chengdu Taxi datasets in folders (NYC Data, Chengdu Data).
  • The data samples are already pre-processed (Data Cleaning, Feature Engineering,... etc) and randomly split into train (Xtrain, Ytrain), validation (Xval, Yval), and test (Xtest, Ytest).
  • The implementation of the prediction model for each dataset is given in a separate jupyter notebook (GSTA on NYC.ipynb, and GSTA on Chengdu.ipynb).

Each data sample is a CSV file. The key contains:
* Location Features: 'pickuplongitude', 'pickuplatitude', 'dropofflongitude', 'dropofflatitude', 'centerlatitude', 'centerlongitude', 'dropoffpca0', 'dropoffpca1', 'pickuppca0', 'pickuppca1' * Cluster Features: 'pickupcluster', 'dropoffcluster', 'pickupcountsonclusterid', 'dropoffcountsonclusterid' * Geo-hash Features: 'pickupgeohash', 'dropoffgeohash' * Date/Time Features: 'DayofMonthsin', 'DayofMonthcos', 'Hoursin', 'Hourcos', 'dayofweeksin', 'dayofweekcos', 'Weekendday', 'Workday' * Weather Features: 'tempm', 'dewptm', 'hum', 'rain', 'snow', 'wdird', 'vism', 'fog', 'thunder', 'tornado', 'condsClear', 'condsHaze', 'condsHeavy Rain', 'condsHeavy Snow', 'condsLight Rain', 'condsLight Snow' * Distance: 'distancehaversine', 'distancedummymanhattan' * Direction: 'direction' * Speed: 'avgspeedKMperHour' * Public Holiday: 'PublicHoliday' * Peak period: 'PeakHour' * Travel Time: 'tripduration'

Parameters:

(These parameteres are tuned with whole dataset, you can change them manually)
The default parameters are:
- optimizer=Adam(lr=0.001).
- loss='meanabsoluteerror' - metrics=['mae','mape'] - Dropout=0.2 - epochs = 50 - batchsize = 256 - kernelregularizer=l2(0.001) - Activation('elu') - BatchNormalization(epsilon=1e-06, momentum=0.98) - kernelinitializer="heuniform" - num_heads = 4 , which is the number of heads in Multi-Head attention.

Results

NYC_Predictions Chengdu_Predictions Abnormal_Weather_Predictions_NYC

Best Model

The best model for each data during training phase is saved to folder "Models" as hdf5 file.

Dependencies:

Keras 2.4.3, Tensorflow 2.3.0, Bokeh 2.2.1, Numpy 1.19.3, Pandas 1.1.5, Sklearn.

BibTeX Citation

If you use our paper in a scientific publication, we would appreciate using the following citations:

@article{Khaled2021, author = {Khaled, Alkilane and Elsir, Alfateh M Tag and Shen, Yanming}, doi = {10.1007/s00521-021-06560-z}, issn = {1433-3058}, journal = {Neural Computing and Applications}, title = {{GSTA: gated spatial–temporal attention approach for travel time prediction}}, url = {https://doi.org/10.1007/s00521-021-06560-z}, year = {2021} }

Owner

  • Name: KhaledAlkilane
  • Login: KhaledAlkilane89
  • Kind: user
  • Location: Hangzhou, China
  • Company: Zhejiang University–University of Illinois Urbana-Champaign (ZJU-UIUC)

Postdoctoral Research Fellow

Citation (CITATION.cff)

cff-version: 1.2.0
message: "If you use this paper, please cite it as below."
authors:
- family-names: "Alkilane"
  given-names: "Khaled"
- family-names: "Elsir"
  given-names: "Alfateh M Tag"
- family-names: "Yanming"
  given-names: "Shen"
title: "GSTA: gated spatial–temporal attention approach for travel time prediction"
doi: 10.1007/s00521-021-06560-z
date-released: 2021-9-27
year: 2021
url: "https://doi.org/10.1007/s00521-021-06560-z"
preferred-citation:
  type: article
  authors:
  - family-names: "Alkilane"
    given-names: "Khaled"
  - family-names: "Elsir"
    given-names: "Alfateh M Tag"
  - family-names: "Yanming"
    given-names: "Shen"
  doi: "10.1007/s00521-021-06560-z"
  journal: "Neural Computing and Applications"
  title: "GSTA: gated spatial–temporal attention approach for travel time prediction"
  year: 2021
  url: "https://doi.org/10.1007/s00521-021-06560-z"
  issn: "1433-3058"

GitHub Events

Total
Last Year