deepflash2

A deep-learning pipeline for segmentation of ambiguous microscopic images.

https://github.com/matjesg/deepflash2

Science Score: 77.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
    Found CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
    Found .zenodo.json file
  • DOI references
    Found 8 DOI reference(s) in README
  • Academic publication links
    Links to: nature.com, zenodo.org
  • Committers with academic emails
    1 of 5 committers (20.0%) from academic institutions
  • Institutional organization owner
  • JOSS paper metadata
  • Scientific vocabulary similarity
    Low similarity (14.9%) to scientific vocabulary

Keywords

bioimage-analysis deep-learning fastai pytorch segmentation

Keywords from Contributors

mesh sequences interactive hacking network-simulation
Last synced: 6 months ago · JSON representation ·

Repository

A deep-learning pipeline for segmentation of ambiguous microscopic images.

Basic Info
Statistics
  • Stars: 59
  • Watchers: 2
  • Forks: 11
  • Open Issues: 3
  • Releases: 20
Topics
bioimage-analysis deep-learning fastai pytorch segmentation
Created about 6 years ago · Last pushed over 1 year ago
Metadata Files
Readme Changelog Contributing License Citation

README.md

Welcome to

deepflash2

Official repository of deepflash2 - a deep-learning pipeline for segmentation of ambiguous microscopic images.

PyPI PyPI - Downloads Conda (channel only) DOI


The best of two worlds: Combining state-of-the-art deep learning with a barrier free environment for life science researchers.

Read the paper, watch the tutorials, or read the docs.
- No coding skills required (graphical user interface) - Ground truth estimation from the annotations of multiple experts for model training and validation - Quality assurance and out-of-distribution detection for reliable prediction on new data - Best-in-class performance for semantic and instance segmentation

Kaggle Gold Medal and Innovation Price Winner: The deepflash2 Python API built the foundation for winning the Innovation Award a Kaggle Gold Medal in the HuBMAP - Hacking the Kidney challenge. Have a look at our solution

Quick Start and Demo

Get started in less than a minute. Watch the tutorials for help.

Demo on Hugging Face Spaces

Go to the demo space -- inference only (no training possible).

Demo usage with Google Colab

For a quick start, run deepflash2 in Google Colaboratory (Google account required).

Colab

The GUI provides a build-in use for our sample data.

  1. Starting the GUI (in Colab or follow the installation instructions below)
  2. Select the task (GT Estimation, Training, or Prediction)
  3. Click the Load Sample Data button in the sidebar and continue to the next sidebar section.

For futher instructions watch the tutorials.

We provide an overview of the tasks below:

| | Ground Truth (GT) Estimation | Training | Prediction | |---|---|---|---| | Main Task | STAPLE or Majority Voting | Ensemble training and validation | Semantic and instance segmentation | | Sample Data | 5 masks from 5 experts each | 5 image/mask pairs | 5 images and 2 trained models | | Expected Output | 5 GT Segmentation Masks | 5 models | 5 predicted segmentation masks (semantic and instance) and uncertainty maps| | Estimated Time | ~ 1 min | ~ 150 min | ~ 4 min |

Times are estimated for Google Colab (with free NVIDIA Tesla K80 GPU).

Paper and Experiments

We provide a complete guide to reproduce our experiments using the deepflash2 Python API here. The data is currently available on Google Drive and Zenodo.

Our Nature Communications article is available here. Please cite

@article{Griebel2023, doi = {10.1038/s41467-023-36960-9}, url = {https://doi.org/10.1038/s41467-023-36960-9}, year = {2023}, month = mar, publisher = {Springer Science and Business Media {LLC}}, volume = {14}, number = {1}, author = {Matthias Griebel and Dennis Segebarth and Nikolai Stein and Nina Schukraft and Philip Tovote and Robert Blum and Christoph M. Flath}, title = {Deep learning-enabled segmentation of ambiguous bioimages with deepflash2}, journal = {Nature Communications} }

System requirements

Works in the browser or on your local pc/server

deepflash2 is designed to run on Windows, Linux, or Mac (x86-64) if pytorch is installable. We generally recommend using Google Colab as it only requires a Google Account and a device with a web browser. To run deepflash2 locally, we recommend using a system with a GPU (e.g., 2 CPUs, 8 GB RAM, NVIDIA GPU with 8GB VRAM or better).

deepflash2 requires Python>3.6 and the software dependencies are defined in the settings.ini file. Additionally, the ground truth estimation functionalities are based on simpleITK>=2.0 and the instance segmentation capabilities are complemented using cellpose v0.6.6.dev13+g316927e.

deepflash2 is tested on Google Colab (Ubuntu 18.04.5 LTS) and locally (Ubuntu 20.04 LTS, Windows 10, MacOS 12.0.1).

Installation Guide

Typical install time is about 1-5 minutes, depending on your internet connection

The GUI of deepflash2 runs as a web application inside a Jupyter Notebook, the de-facto standard of computational notebooks in the scientific community. The GUI is built on top of the deepflash2 Python API, which can be used independently (read the docs).

Google Colab

Colab

Open Colab and excute the Set up environment cell or follow the pip instructions. Colab provides free access to graphics processing units (GPUs) for fast model training and prediction (Google account required).

Other systems

We recommend installation into a clean Python 3.7, 3.8, or 3.9 environment (e.g., using conda).

mamba/conda

Installation with mamba (installaton instructions) allows a fast and realiable installation process (you can replace mamba with conda and add the --update-all flag to do the installation with conda).

bash mamba install -c fastchan -c conda-forge -c matjesg deepflash2

pip

If you want to use your GPU and install with pip, we recommend installing PyTorch first by following the installation instructions.

bash pip install -U deepflash2

Using the GUI

If you want to use the GUI, make sure to download the GUI notebook, e.g., using curl

bash curl -o deepflash2_GUI.ipynb https://raw.githubusercontent.com/matjesg/deepflash2/master/deepflash2_GUI.ipynb

and start a Jupyter server.

bash jupyter notebook

Then, open deepflash2_GUI.ipynb within Notebook environment.

Docker

Docker images for deepflash2 are built on top of the latest pytorch image.

  • CPU only > docker run -p 8888:8888 matjes/deepflash2 ./run_jupyter.sh
  • For training, we recommend to run docker with GPU support (You need to install Nvidia-Docker to enable gpu compatibility with these containers.) > docker run --gpus all --shm-size=256m -p 8888:8888 matjes/deepflash2 ./run_jupyter.sh

All docker containers are configured to start a jupyter server. To add data, we recomment using bind mounts with /workspace as target. To start the GUI, open deepflash2_GUI.ipynb within Notebook environment.

For more information on how to run docker see docker orientation and setup.

Creating segmentation masks with Fiji/ImageJ

If you don't have labelled training data available, you can use this instruction manual for creating segmentation maps. The ImagJ-Macro is available here.

Owner

  • Name: Matthias Griebel
  • Login: matjesg
  • Kind: user
  • Location: Berlin

Citation (CITATION.cff)

cff-version: 1.1.0
message: "If you use this software, please cite it as below."
authors:
  - family-names: Griebel
    given-names: Matthias
    orcid: https://orcid.org/0000-0003-1959-0242
  - family-names: Segebarth
    given-names: Dennis
  - family-names: Stein
    given-names: Nikolai
  - family-names: Schukraft
    given-names: Nina
  - family-names: Tovote
    given-names: Philip
  - family-names: Blum
    given-names: Robert
  - family-names: Flath
    name-particle: M.
    given-names: Christoph
title: "Deep learning-enabled segmentation of ambiguous bioimages with deepflash2"
version: 0.2.2
license: "Apache-2.0"
date-released: 2021-03-29

GitHub Events

Total
  • Issues event: 1
  • Watch event: 3
  • Delete event: 1
  • Issue comment event: 2
  • Pull request event: 2
  • Create event: 2
Last Year
  • Issues event: 1
  • Watch event: 3
  • Delete event: 1
  • Issue comment event: 2
  • Pull request event: 2
  • Create event: 2

Committers

Last synced: about 2 years ago

All Time
  • Total Commits: 441
  • Total Committers: 5
  • Avg Commits per committer: 88.2
  • Development Distribution Score (DDS): 0.156
Past Year
  • Commits: 12
  • Committers: 3
  • Avg Commits per committer: 4.0
  • Development Distribution Score (DDS): 0.417
Top Committers
Name Email Commits
Matthias Griebel m****l@u****e 372
Matthias Griebel g****s@g****m 51
dependabot[bot] 4****] 15
nikolai_stein n****6@g****m 2
natbutter n****r@g****m 1
Committer Domains (Top 20 + Academic)

Issues and Pull Requests

Last synced: over 1 year ago

All Time
  • Total issues: 15
  • Total pull requests: 50
  • Average time to close issues: 24 days
  • Average time to close pull requests: 12 days
  • Total issue authors: 13
  • Total pull request authors: 5
  • Average comments per issue: 1.67
  • Average comments per pull request: 0.52
  • Merged pull requests: 38
  • Bot issues: 0
  • Bot pull requests: 25
Past Year
  • Issues: 2
  • Pull requests: 10
  • Average time to close issues: 20 days
  • Average time to close pull requests: 22 days
  • Issue authors: 2
  • Pull request authors: 2
  • Average comments per issue: 0.5
  • Average comments per pull request: 0.3
  • Merged pull requests: 6
  • Bot issues: 0
  • Bot pull requests: 9
Top Authors
Issue Authors
  • AmSchulte (2)
  • Maddonix (2)
  • zhangqioct (1)
  • Fangjunfan123 (1)
  • Random5747 (1)
  • mu745511 (1)
  • AnthonyChanMarvel (1)
  • Xol546 (1)
  • AscheJan (1)
  • matjesg (1)
  • jaideep11061982 (1)
  • sreevishnu-damodaran (1)
  • pakiessling (1)
  • BubbleDirk (1)
Pull Request Authors
  • dependabot[bot] (33)
  • matjesg (17)
  • mariusschroeter (5)
  • nicoelbert (3)
  • natbutter (1)
Top Labels
Issue Labels
bug (2) enhancement (1)
Pull Request Labels
dependencies (34) enhancement (6) documentation (1) bug (1)

Dependencies

docs/Gemfile rubygems
  • github-pages >= 0 development
  • jekyll >= 3.7
  • jekyll-remote-theme >= 0
  • kramdown >= 2.3.1
  • nokogiri < 1.13.7
docs/Gemfile.lock rubygems
  • activesupport 6.0.3.6
  • addressable 2.8.0
  • coffee-script 2.4.1
  • coffee-script-source 1.11.1
  • colorator 1.1.0
  • commonmarker 0.17.13
  • concurrent-ruby 1.1.8
  • dnsruby 1.61.5
  • em-websocket 0.5.2
  • ethon 0.12.0
  • eventmachine 1.2.7
  • execjs 2.7.0
  • faraday 1.3.0
  • faraday-net_http 1.0.1
  • ffi 1.15.0
  • forwardable-extended 2.6.0
  • gemoji 3.0.1
  • github-pages 214
  • github-pages-health-check 1.17.0
  • html-pipeline 2.14.0
  • http_parser.rb 0.6.0
  • i18n 0.9.5
  • jekyll 3.9.0
  • jekyll-avatar 0.7.0
  • jekyll-coffeescript 1.1.1
  • jekyll-commonmark 1.3.1
  • jekyll-commonmark-ghpages 0.1.6
  • jekyll-default-layout 0.1.4
  • jekyll-feed 0.15.1
  • jekyll-gist 1.5.0
  • jekyll-github-metadata 2.13.0
  • jekyll-mentions 1.6.0
  • jekyll-optional-front-matter 0.3.2
  • jekyll-paginate 1.1.0
  • jekyll-readme-index 0.3.0
  • jekyll-redirect-from 0.16.0
  • jekyll-relative-links 0.6.1
  • jekyll-remote-theme 0.4.3
  • jekyll-sass-converter 1.5.2
  • jekyll-seo-tag 2.7.1
  • jekyll-sitemap 1.4.0
  • jekyll-swiss 1.0.0
  • jekyll-theme-architect 0.1.1
  • jekyll-theme-cayman 0.1.1
  • jekyll-theme-dinky 0.1.1
  • jekyll-theme-hacker 0.1.2
  • jekyll-theme-leap-day 0.1.1
  • jekyll-theme-merlot 0.1.1
  • jekyll-theme-midnight 0.1.1
  • jekyll-theme-minimal 0.1.1
  • jekyll-theme-modernist 0.1.1
  • jekyll-theme-primer 0.5.4
  • jekyll-theme-slate 0.1.1
  • jekyll-theme-tactile 0.1.1
  • jekyll-theme-time-machine 0.1.1
  • jekyll-titles-from-headings 0.5.3
  • jekyll-watch 2.2.1
  • jemoji 0.12.0
  • kramdown 2.3.1
  • kramdown-parser-gfm 1.1.0
  • liquid 4.0.3
  • listen 3.5.1
  • mercenary 0.3.6
  • mini_portile2 2.8.0
  • minima 2.5.1
  • minitest 5.14.4
  • multipart-post 2.1.1
  • nokogiri 1.13.6
  • octokit 4.20.0
  • pathutil 0.16.2
  • public_suffix 4.0.6
  • racc 1.6.0
  • rb-fsevent 0.10.4
  • rb-inotify 0.10.1
  • rexml 3.2.5
  • rouge 3.26.0
  • ruby-enum 0.9.0
  • ruby2_keywords 0.0.4
  • rubyzip 2.3.0
  • safe_yaml 1.0.5
  • sass 3.7.4
  • sass-listen 4.0.0
  • sawyer 0.8.2
  • simpleidn 0.2.1
  • terminal-table 1.8.0
  • thread_safe 0.3.6
  • typhoeus 1.4.0
  • tzinfo 1.2.10
  • unf 0.1.4
  • unf_ext 0.0.7.7
  • unicode-display_width 1.7.0
  • zeitwerk 2.4.2
Dockerfile docker
  • pytorch/pytorch latest build
.github/workflows/docker.yaml actions
  • actions/checkout main composite
  • actions/setup-python v2 composite
.github/workflows/main.yml actions
  • actions/checkout v1 composite
  • actions/setup-python v1 composite
setup.py pypi