indic-syntax-evaluation

Vyākarana: A Colorless Green Benchmark for Syntactic Evaluation in Indic Languages

https://github.com/rajaswa/indic-syntax-evaluation

Science Score: 39.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
    Found .zenodo.json file
  • DOI references
    Found 1 DOI reference(s) in README
  • Academic publication links
  • Academic email domains
  • Institutional organization owner
  • JOSS paper metadata
  • Scientific vocabulary similarity
    Low similarity (4.1%) to scientific vocabulary

Keywords

dataset deep-learning hacktoberfest indic-nlp syntax transformers
Last synced: 6 months ago · JSON representation

Repository

Vyākarana: A Colorless Green Benchmark for Syntactic Evaluation in Indic Languages

Basic Info
Statistics
  • Stars: 15
  • Watchers: 1
  • Forks: 2
  • Open Issues: 0
  • Releases: 0
Topics
dataset deep-learning hacktoberfest indic-nlp syntax transformers
Created over 4 years ago · Last pushed almost 4 years ago
Metadata Files
Readme License Citation

README.md

Vykarana

Light         Dark

While there has been significant progress towards developing NLU resources for Indic languages, syntactic evaluation has been relatively less explored. Unlike English, Indic languages have rich morphosyntax, grammatical genders, free linear word-order, and highly inflectional morphology. Here, we introduce Vykarana: a benchmark of Colorless Green sentences in Indic languages for syntactic evaluation of multilingual language models.

The benchmark comprises four syntax-related tasks: 1. PoS Tagging (POS) 2. Grammatical Case Marking (GCM) 3. Syntax Tree-depth Prediction (STDP) 4. Subject-Verb Agreement (SVA).

Probing Leaderboard

Hindi

| Treebank | Probing Task | Last Layer | | | | | Best Layer | | | | | |:-------------:|:----------------:|:--------------:|:---------:|:---------------:|:-------------:|:---------:|:--------------:|:-----------:|:---------------:|:-------------:|:-----------:| | | | mBERT | XLM-R | DistilmBERT | IndicBERT | MuRIL | mBERT | XLM-R | DistilmBERT | IndicBERT | MuRIL | | CG-HDTB | POS | 0.8894 | 0.9143 | 0.8448 | 0.7418 | 0.6807 | 0.8932 (11) | 0.9232 (8) | 0.8543 (5) | 0.7642 (6) | 0.7030 (2) | | | STDP | 0.3455 | 0.2138 | 0.3254 | 0.3566 | 0.2318 | 0.3730 (6) | 0.3232 (3) | 0.3881 (5) | 0.3756 (4) | 0.3570 (10) | | | GCM | 0.6886 | 0.6967 | 0.6733 | 0.6216 | 0.5463 | 0.7050 (7) | 0.7234 (8) | 0.6968 (4) | 0.6479 (2) | 0.5878 (3) | | | SVA | 0.6003 | 0.5935 | 0.6040 | 0.3990 | 0.5568 | 0.6140 (8) | 0.5935 (12) | 0.6040 (6) | 0.4451 (2) | 0.5568 (12) | | | Average | 0.6310 | 0.6046 | 0.6119 | 0.5298 | 0.5039 | 0.6463 | 0.6408 | 0.6358 | 0.5582 | 0.5511 | | csCG-HDTB | POS | 0.7543 | 0.7881 | 0.7422 | 0.7303 | 0.6752 | 0.7744 (7) | 0.8079 (10) | 0.7596 (5) | 0.7608 (2) | 0.7011 (1) | | | STDP | 0.3104 | 0.3429 | 0.3531 | 0.3805 | 0.2457 | 0.3879 (7) | 0.3584 (3) | 0.3843 (5) | 0.3909 (3) | 0.3676 (7) | | | GCM | 0.6415 | 0.6456 | 0.6533 | 0.6306 | 0.5653 | 0.6604 (8) | 0.6683 (8) | 0.6549 (5) | 0.6535 (8) | 0.5859 (3) | | | SVA | 0.5334 | 0.5629 | 0.5255 | 0.5389 | 0.5262 | 0.5650 (1) | 0.5629 (12) | 0.5752 (3) | 0.5389 (12) | 0.5647 (11) | | | Average | 0.5599 | 0.5849 | 0.5685 | 0.5701 | 0.5031 | 0.5969 | 0.5994 | 0.5935 | 0.5860 | 0.5548 |

Tamil

| Treebank | Probing Task | Last Layer | | | | | Best Layer | | | | | |:------------:|:----------------:|:--------------:|:------------:|:---------------:|:-------------:|:------------:|:--------------:|:------------:|:---------------:|:-------------:|:------------:| | | | mBERT | XLM-R | DistilmBERT | IndicBERT | MuRIL | mBERT | XLM-R | DistilmBERT | IndicBERT | MuRIL | | CG-TTB | POS | 0.7444 | 0.7336 | 0.6431 | 0.5874 | 0.4539 | 0.7719 (9) | 0.7946 (7) | 0.6809 (4) | 0.6327 (6) | 0.4741 (5) | | | STDP | 0.0947 | 0.0716 | 0.2315 | 0.0716 | 0.0898 | 0.2209 (10) | 0.0898 (6) | 0.2819 (3) | 0.0716 (1) | 0.2051 (11) | | | GCM | 0.7319 | 0.6800 | 0.6336 | 0.5864 | 0.5878 | 0.7966 (7) | 0.8187 (6) | 0.6765 (4) | 0.5864 (12) | 0.6040 (1) | | | Average | 0.5237 | 0.4951 | 0.5027 | 0.4151 | 0.3772 | 0.5965 | 0.5677 | 0.5464 | 0.4302 | 0.4277 | | csCG-TTB | POS | 0.5740 | 0.5416 | 0.5531 | 0.5024 | 0.4526 | 0.6012 (6) | 0.5947 (6) | 0.5759 (5) | 0.5516 (8) | 0.4817 (4) | | | STDP | 0.1029 | 0.1184 | 0.1476 | 0.0716 | 0.0716 | 0.2431 (11) | 0.1085 (1) | 0.2556 (4) | 0.0716 (12) | 0.1467 (7) | | | GCM | 0.5931 | 0.5832 | 0.5627 | 0.5605 | 0.5717 | 0.6300 (11) | 0.6065 (8) | 0.5811 (2) | 0.5852 (4) | 0.5875 (7) | | | Average | 0.4233 | 0.4144 | 0.4211 | 0.3782 | 0.3653 | 0.4914 | 0.4366 | 0.4709 | 0.4028 | 0.4053 |

Submission Instructions

Use the given task-specific notebooks and treebanks to get the probing results for any available encoder-only language model from Hugging Face. Open-up a new Pull request to add your model to the leaderboard with links to the notebooks to replicate the results.

Contributing

We are looking for linguists and native-language speakers to help us expand the benchmark to other Indic langauges available on Universal Dependencies. Please open-up an issue with the label add language here for the same.

Citation

If you use this dataset in your work, make sure to cite our paper:

bibtex @inproceedings{patil-etal-2021-vyakarana, title = "{V}y{\=a}karana: {A} Colorless Green Benchmark for Syntactic Evaluation in Indic Languages", author = "Patil, Rajaswa and Dhillon, Jasleen and Mahurkar, Siddhant and Kulkarni, Saumitra and Malhotra, Manav and Baths, Veeky", booktitle = "Proceedings of the 1st Workshop on Multilingual Representation Learning", month = nov, year = "2021", address = "Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.mrl-1.14", doi = "10.18653/v1/2021.mrl-1.14", pages = "153--165", }

bash Rajaswa Patil, Jasleen Dhillon, Siddhant Mahurkar, Saumitra Kulkarni, Manav Malhotra, and Veeky Baths. 2021. Vykarana: A Colorless Green Benchmark for Syntactic Evaluation in Indic Languages. In Proceedings of the 1st Workshop on Multilingual Representation Learning, pages 153165, Punta Cana, Dominican Republic. Association for Computational Linguistics.

Owner

  • Name: Rajaswa Patil
  • Login: rajaswa
  • Kind: user
  • Location: Pune, Maharashtra, India.

I am a Research Fellow at the Microsoft PROSE team. My work broadly focuses on Neuro-symbolic AI and Program Synthesis.

GitHub Events

Total
Last Year