flowdock

A geometric flow matching model for generative protein-ligand docking and affinity prediction. (ISMB 2025)

https://github.com/bioinfomachinelearning/flowdock

Science Score: 67.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
    Found CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
    Found .zenodo.json file
  • DOI references
    Found 3 DOI reference(s) in README
  • Academic publication links
    Links to: arxiv.org, zenodo.org
  • Academic email domains
  • Institutional organization owner
  • JOSS paper metadata
  • Scientific vocabulary similarity
    Low similarity (9.3%) to scientific vocabulary

Keywords

computational-biology computational-chemistry deep-learning generative-model machine-learning molecular-docking structure-prediction
Last synced: 6 months ago · JSON representation ·

Repository

A geometric flow matching model for generative protein-ligand docking and affinity prediction. (ISMB 2025)

Basic Info
  • Host: GitHub
  • Owner: BioinfoMachineLearning
  • License: mit
  • Language: Python
  • Default Branch: main
  • Homepage:
  • Size: 32.6 MB
Statistics
  • Stars: 104
  • Watchers: 4
  • Forks: 17
  • Open Issues: 1
  • Releases: 3
Topics
computational-biology computational-chemistry deep-learning generative-model machine-learning molecular-docking structure-prediction
Created about 1 year ago · Last pushed 6 months ago
Metadata Files
Readme License Citation

README.md

# FlowDock PyTorch Lightning Config: Hydra [![Paper](http://img.shields.io/badge/paper-arxiv.2412.10966-B31B1B.svg)](https://arxiv.org/abs/2412.10966) [![Conference](http://img.shields.io/badge/ISMB-2025-4b44ce.svg)](https://academic.oup.com/bioinformatics/article/41/Supplement_1/i198/8199366) [![Data DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.15066450.svg)](https://doi.org/10.5281/zenodo.15066450)

Description

This is the official codebase of the paper

FlowDock: Geometric Flow Matching for Generative Protein-Ligand Docking and Affinity Prediction

[arXiv] [ISMB] [Neurosnap] [Tamarind Bio]

![Animation of a flow model-predicted 3D protein-ligand complex structure visualized successively](img/6I67.gif) ![Animation of a flow model-predicted 3D protein-multi-ligand complex structure visualized successively](img/T1152.gif)

Contents

Installation

Install Mamba ```bash wget "https://github.com/conda-forge/miniforge/releases/latest/download/Miniforge3-$(uname)-$(uname -m).sh" bash Miniforge3-$(uname)-$(uname -m).sh # accept all terms and install to the default location rm Miniforge3-$(uname)-$(uname -m).sh # (optionally) remove installer after using it source ~/.bashrc # alternatively, one can restart their shell session to achieve the same result ``` Install dependencies ```bash # clone project git clone https://github.com/BioinfoMachineLearning/FlowDock cd FlowDock # create conda environment mamba env create -f environments/flowdock_environment.yaml conda activate FlowDock # NOTE: one still needs to use `conda` to (de)activate environments pip3 install -e . # install local project as package pip3 install prody==2.4.1 --no-dependencies # install ProDy without NumPy dependency ``` Download checkpoints ```bash # pretrained NeuralPLexer weights cd checkpoints/ wget https://zenodo.org/records/10373581/files/neuralplexermodels_downstream_datasets_predictions.zip unzip neuralplexermodels_downstream_datasets_predictions.zip rm neuralplexermodels_downstream_datasets_predictions.zip cd ../ ``` ```bash # pretrained FlowDock weights wget https://zenodo.org/records/15066450/files/flowdock_checkpoints.tar.gz tar -xzf flowdock_checkpoints.tar.gz rm flowdock_checkpoints.tar.gz ``` Download preprocessed datasets ```bash # cached input data for training/validation/testing wget "https://mailmissouri-my.sharepoint.com/:u:/g/personal/acmwhb_umsystem_edu/ER1hctIBhDVFjM7YepOI6WcBXNBm4_e6EBjFEHAM1A3y5g?download=1" tar -xzf flowdock_data_cache.tar.gz rm flowdock_data_cache.tar.gz # cached data for PDBBind, Binding MOAD, DockGen, and the PDB-based van der Mers (vdM) dataset wget https://zenodo.org/records/15066450/files/flowdock_pdbbind_data.tar.gz tar -xzf flowdock_pdbbind_data.tar.gz rm flowdock_pdbbind_data.tar.gz wget https://zenodo.org/records/15066450/files/flowdock_moad_data.tar.gz tar -xzf flowdock_moad_data.tar.gz rm flowdock_moad_data.tar.gz wget https://zenodo.org/records/15066450/files/flowdock_dockgen_data.tar.gz tar -xzf flowdock_dockgen_data.tar.gz rm flowdock_dockgen_data.tar.gz wget https://zenodo.org/records/15066450/files/flowdock_pdbsidechain_data.tar.gz tar -xzf flowdock_pdbsidechain_data.tar.gz rm flowdock_pdbsidechain_data.tar.gz ```

How to prepare data for FlowDock

**NOTE:** The following steps (besides downloading PDBBind and Binding MOAD's PDB files) are only necessary if one wants to fully process each of the following datasets manually. Otherwise, preprocessed versions of each dataset can be found on [Zenodo](https://zenodo.org/records/15066450). Download data ```bash # fetch preprocessed PDBBind and Binding MOAD (as well as the optional DockGen and vdM datasets) cd data/ wget "https://mailmissouri-my.sharepoint.com/:u:/g/personal/acmwhb_umsystem_edu/EXesf4oh6ztOusGqFcDyqP0Bvk-LdJ1DagEl8GNK-HxDtg?download=1" wget https://zenodo.org/records/10656052/files/BindingMOAD_2020_processed.tar wget https://zenodo.org/records/10656052/files/DockGen.tar wget https://files.ipd.uw.edu/pub/training_sets/pdb_2021aug02.tar.gz mv EXesf4oh6ztOusGqFcDyqP0Bvk-LdJ1DagEl8GNK-HxDtg?download=1 PDBBind.tar.gz tar -xzf PDBBind.tar.gz tar -xf BindingMOAD_2020_processed.tar tar -xf DockGen.tar tar -xzf pdb_2021aug02.tar.gz rm PDBBind.tar.gz BindingMOAD_2020_processed.tar DockGen.tar pdb_2021aug02.tar.gz mkdir pdbbind/ moad/ pdbsidechain/ mv PDBBind_processed/ pdbbind/ mv BindingMOAD_2020_processed/ moad/ mv pdb_2021aug02/ pdbsidechain/ cd ../ ``` Lastly, to finetune `FlowDock` using the `PLINDER` dataset, one must first prepare this data for training ```bash # fetch PLINDER data (NOTE: requires ~1 hour to download and ~750G of storage) export PLINDER_MOUNT="$(pwd)/data/PLINDER" mkdir -p "$PLINDER_MOUNT" # create the directory if it doesn't exist plinder_download -y ``` ### Generating ESM2 embeddings for each protein (optional, cached input data available on SharePoint) To generate the ESM2 embeddings for the protein inputs, first create all the corresponding FASTA files for each protein sequence ```bash python flowdock/data/components/esm_embedding_preparation.py --dataset pdbbind --data_dir data/pdbbind/PDBBind_processed/ --out_file data/pdbbind/pdbbind_sequences.fasta python flowdock/data/components/esm_embedding_preparation.py --dataset moad --data_dir data/moad/BindingMOAD_2020_processed/pdb_protein/ --out_file data/moad/moad_sequences.fasta python flowdock/data/components/esm_embedding_preparation.py --dataset dockgen --data_dir data/DockGen/processed_files/ --out_file data/DockGen/dockgen_sequences.fasta python flowdock/data/components/esm_embedding_preparation.py --dataset pdbsidechain --data_dir data/pdbsidechain/pdb_2021aug02/pdb/ --out_file data/pdbsidechain/pdbsidechain_sequences.fasta ``` Then, generate all ESM2 embeddings in batch using the ESM repository's helper script ```bash python flowdock/data/components/esm_embedding_extraction.py esm2_t33_650M_UR50D data/pdbbind/pdbbind_sequences.fasta data/pdbbind/embeddings_output --repr_layers 33 --include per_tok --truncation_seq_length 4096 --cuda_device_index 0 python flowdock/data/components/esm_embedding_extraction.py esm2_t33_650M_UR50D data/moad/moad_sequences.fasta data/moad/embeddings_output --repr_layers 33 --include per_tok --truncation_seq_length 4096 --cuda_device_index 0 python flowdock/data/components/esm_embedding_extraction.py esm2_t33_650M_UR50D data/DockGen/dockgen_sequences.fasta data/DockGen/embeddings_output --repr_layers 33 --include per_tok --truncation_seq_length 4096 --cuda_device_index 0 python flowdock/data/components/esm_embedding_extraction.py esm2_t33_650M_UR50D data/pdbsidechain/pdbsidechain_sequences.fasta data/pdbsidechain/embeddings_output --repr_layers 33 --include per_tok --truncation_seq_length 4096 --cuda_device_index 0 ``` ### Predicting apo protein structures using ESMFold (optional, cached data available on Zenodo) To generate the apo version of each protein structure, first create ESMFold-ready versions of the combined FASTA files prepared above by the script `esm_embedding_preparation.py` for the PDBBind, Binding MOAD, DockGen, and PDBSidechain datasets, respectively ```bash python flowdock/data/components/esmfold_sequence_preparation.py dataset=pdbbind python flowdock/data/components/esmfold_sequence_preparation.py dataset=moad python flowdock/data/components/esmfold_sequence_preparation.py dataset=dockgen python flowdock/data/components/esmfold_sequence_preparation.py dataset=pdbsidechain ``` Then, predict each apo protein structure using ESMFold's batch inference script ```bash # Note: Having a CUDA-enabled device available when running this script is highly recommended python flowdock/data/components/esmfold_batch_structure_prediction.py -i data/pdbbind/pdbbind_esmfold_sequences.fasta -o data/pdbbind/pdbbind_esmfold_structures --cuda-device-index 0 --skip-existing python flowdock/data/components/esmfold_batch_structure_prediction.py -i data/moad/moad_esmfold_sequences.fasta -o data/moad/moad_esmfold_structures --cuda-device-index 0 --skip-existing python flowdock/data/components/esmfold_batch_structure_prediction.py -i data/DockGen/dockgen_esmfold_sequences.fasta -o data/DockGen/dockgen_esmfold_structures --cuda-device-index 0 --skip-existing python flowdock/data/components/esmfold_batch_structure_prediction.py -i data/pdbsidechain/pdbsidechain_esmfold_sequences.fasta -o data/pdbsidechain/pdbsidechain_esmfold_structures --cuda-device-index 0 --skip-existing ``` Align each apo protein structure to its corresponding holo protein structure counterpart in PDBBind, Binding MOAD, and PDBSidechain, taking ligand conformations into account during each alignment ```bash python flowdock/data/components/esmfold_apo_to_holo_alignment.py dataset=pdbbind num_workers=1 python flowdock/data/components/esmfold_apo_to_holo_alignment.py dataset=moad num_workers=1 python flowdock/data/components/esmfold_apo_to_holo_alignment.py dataset=dockgen num_workers=1 python flowdock/data/components/esmfold_apo_to_holo_alignment.py dataset=pdbsidechain num_workers=1 ``` Lastly, assess the apo-to-holo alignments in terms of statistics and structural metrics to enable runtime-dynamic dataset filtering using such information ```bash python flowdock/data/components/esmfold_apo_to_holo_assessment.py dataset=pdbbind usalign_exec_path=$MY_USALIGN_EXEC_PATH python flowdock/data/components/esmfold_apo_to_holo_assessment.py dataset=moad usalign_exec_path=$MY_USALIGN_EXEC_PATH python flowdock/data/components/esmfold_apo_to_holo_assessment.py dataset=dockgen usalign_exec_path=$MY_USALIGN_EXEC_PATH python flowdock/data/components/esmfold_apo_to_holo_assessment.py dataset=pdbsidechain usalign_exec_path=$MY_USALIGN_EXEC_PATH ```

How to train FlowDock

Train model with default configuration ```bash # train on CPU python flowdock/train.py trainer=cpu # train on GPU python flowdock/train.py trainer=gpu ``` Train model with chosen experiment configuration from [configs/experiment/](configs/experiment/) ```bash python flowdock/train.py experiment=experiment_name.yaml ``` For example, reproduce `FlowDock`'s default model training run ```bash python flowdock/train.py experiment=flowdock_fm ``` **Note:** You can override any parameter from command line like this ```bash python flowdock/train.py experiment=flowdock_fm trainer.max_epochs=20 data.batch_size=8 ``` For example, override parameters to finetune `FlowDock`'s pretrained weights using a new dataset such as [PLINDER](https://www.plinder.sh/) ```bash python flowdock/train.py experiment=flowdock_fm data=plinder ckpt_path=checkpoints/esmfold_prior_paper_weights.ckpt ```

How to evaluate FlowDock

To reproduce `FlowDock`'s evaluation results for structure prediction, please refer to its documentation in version `0.6.0-FlowDock` of the [PoseBench](https://github.com/BioinfoMachineLearning/PoseBench/tree/0.6.0-FlowDock?tab=readme-ov-file#how-to-run-inference-with-flowdock) GitHub repository. To reproduce `FlowDock`'s evaluation results for binding affinity prediction using the PDBBind dataset ```bash python flowdock/eval.py data.test_datasets=[pdbbind] ckpt_path=checkpoints/esmfold_prior_paper_weights-EMA.ckpt trainer=gpu ... # re-run two more times to gather triplicate results ```

How to create comparative plots of benchmarking results

Download baseline method predictions and results ```bash # cached predictions and evaluation metrics for reproducing structure prediction paper results wget https://zenodo.org/records/15066450/files/alphafold3_baseline_method_predictions.tar.gz tar -xzf alphafold3_baseline_method_predictions.tar.gz rm alphafold3_baseline_method_predictions.tar.gz wget https://zenodo.org/records/15066450/files/chai_baseline_method_predictions.tar.gz tar -xzf chai_baseline_method_predictions.tar.gz rm chai_baseline_method_predictions.tar.gz wget https://zenodo.org/records/15066450/files/diffdock_baseline_method_predictions.tar.gz tar -xzf diffdock_baseline_method_predictions.tar.gz rm diffdock_baseline_method_predictions.tar.gz wget https://zenodo.org/records/15066450/files/dynamicbind_baseline_method_predictions.tar.gz tar -xzf dynamicbind_baseline_method_predictions.tar.gz rm dynamicbind_baseline_method_predictions.tar.gz wget https://zenodo.org/records/15066450/files/flowdock_baseline_method_predictions.tar.gz tar -xzf flowdock_baseline_method_predictions.tar.gz rm flowdock_baseline_method_predictions.tar.gz wget https://zenodo.org/records/15066450/files/flowdock_aft_baseline_method_predictions.tar.gz tar -xzf flowdock_aft_baseline_method_predictions.tar.gz rm flowdock_aft_baseline_method_predictions.tar.gz wget https://zenodo.org/records/15066450/files/flowdock_pft_baseline_method_predictions.tar.gz tar -xzf flowdock_pft_baseline_method_predictions.tar.gz rm flowdock_pft_baseline_method_predictions.tar.gz wget https://zenodo.org/records/15066450/files/flowdock_esmfold_baseline_method_predictions.tar.gz tar -xzf flowdock_esmfold_baseline_method_predictions.tar.gz rm flowdock_esmfold_baseline_method_predictions.tar.gz wget https://zenodo.org/records/15066450/files/flowdock_chai_baseline_method_predictions.tar.gz tar -xzf flowdock_chai_baseline_method_predictions.tar.gz rm flowdock_chai_baseline_method_predictions.tar.gz wget https://zenodo.org/records/15066450/files/flowdock_hp_baseline_method_predictions.tar.gz tar -xzf flowdock_hp_baseline_method_predictions.tar.gz rm flowdock_hp_baseline_method_predictions.tar.gz wget https://zenodo.org/records/15066450/files/neuralplexer_baseline_method_predictions.tar.gz tar -xzf neuralplexer_baseline_method_predictions.tar.gz rm neuralplexer_baseline_method_predictions.tar.gz wget https://zenodo.org/records/15066450/files/vina_p2rank_baseline_method_predictions.tar.gz tar -xzf vina_p2rank_baseline_method_predictions.tar.gz rm vina_p2rank_baseline_method_predictions.tar.gz wget https://zenodo.org/records/15066450/files/rfaa_baseline_method_predictions.tar.gz tar -xzf rfaa_baseline_method_predictions.tar.gz rm rfaa_baseline_method_predictions.tar.gz ``` Reproduce paper result figures ```bash jupyter notebook notebooks/casp16_binding_affinity_prediction_results_plotting.ipynb jupyter notebook notebooks/casp16_flowdock_vs_multicom_ligand_structure_prediction_results_plotting.ipynb jupyter notebook notebooks/dockgen_structure_prediction_results_plotting.ipynb jupyter notebook notebooks/posebusters_benchmark_structure_prediction_chemical_similarity_analysis.ipynb jupyter notebook notebooks/posebusters_benchmark_structure_prediction_results_plotting.ipynb ```

How to predict new protein-ligand complex structures and their affinities using FlowDock

For example, generate new protein-ligand complexes for a pair of protein sequence and ligand SMILES strings such as those of the PDBBind 2020 test target `6i67` ```bash python flowdock/sample.py ckpt_path=checkpoints/esmfold_prior_paper_weights-EMA.ckpt model.cfg.prior_type=esmfold sampling_task=batched_structure_sampling input_receptor='YNKIVHLLVAEPEKIYAMPDPTVPDSDIKALTTLCDLADRELVVIIGWAKHIPGFSTLSLADQMSLLQSAWMEILILGVVYRSLFEDELVYADDYIMDEDQSKLAGLLDLNNAILQLVKKYKSMKLEKEEFVTLKAIALANSDSMHIEDVEAVQKLQDVLHEALQDYEAGQHMEDPRRAGKMLMTLPLLRQTSTKAVQHFYNKLEGKVPMHKLFLEMLEAKV' input_ligand='"c1cc2c(cc1O)CCCC2"' input_template=data/pdbbind/pdbbind_holo_aligned_esmfold_structures/6i67_holo_aligned_esmfold_protein.pdb sample_id='6i67' out_path='./6i67_sampled_structures/' n_samples=5 chunk_size=5 num_steps=40 sampler=VDODE sampler_eta=1.0 start_time='1.0' use_template=true separate_pdb=true visualize_sample_trajectories=true auxiliary_estimation_only=false esmfold_chunk_size=null trainer=gpu ``` Or, for example, generate new protein-ligand complexes for pairs of protein sequences and (multi-)ligand SMILES strings (delimited via `|`) such as those of the CASP15 target `T1152` ```bash python flowdock/sample.py ckpt_path=checkpoints/esmfold_prior_paper_weights-EMA.ckpt model.cfg.prior_type=esmfold sampling_task=batched_structure_sampling input_receptor='MYTVKPGDTMWKIAVKYQIGISEIIAANPQIKNPNLIYPGQKINIP|MYTVKPGDTMWKIAVKYQIGISEIIAANPQIKNPNLIYPGQKINIP|MYTVKPGDTMWKIAVKYQIGISEIIAANPQIKNPNLIYPGQKINIPN' input_ligand='"CC(=O)NC1C(O)OC(CO)C(OC2OC(CO)C(OC3OC(CO)C(O)C(O)C3NC(C)=O)C(O)C2NC(C)=O)C1O"' input_template=data/test_cases/predicted_structures/T1152.pdb sample_id='T1152' out_path='./T1152_sampled_structures/' n_samples=5 chunk_size=5 num_steps=40 sampler=VDODE sampler_eta=1.0 start_time='1.0' use_template=true separate_pdb=true visualize_sample_trajectories=true auxiliary_estimation_only=false esmfold_chunk_size=null trainer=gpu ``` If you do not already have a template protein structure available for your target of interest, set `input_template=null` to instead have the sampling script predict the ESMFold structure of your provided `input_protein` sequence before running the sampling pipeline. For more information regarding the input arguments available for sampling, please refer to the config at `configs/sample.yaml`. **NOTE:** To optimize prediction runtimes, a `csv_path` can be specified instead of the `input_receptor`, `input_ligand`, and `input_template` CLI arguments to perform *batched* prediction for a collection of protein-ligand sequence pairs, each represented as a CSV row containing column values for `id`, `input_receptor`, `input_ligand`, and `input_template`. Additionally, disabling `visualize_sample_trajectories` may reduce storage requirements when predicting a large batch of inputs. For instance, one can perform batched prediction as follows: ```bash python flowdock/sample.py ckpt_path=checkpoints/esmfold_prior_paper_weights-EMA.ckpt model.cfg.prior_type=esmfold sampling_task=batched_structure_sampling csv_path='./data/test_cases/prediction_inputs/flowdock_batched_inputs.csv' out_path='./T1152_batch_sampled_structures/' n_samples=5 chunk_size=5 num_steps=40 sampler=VDODE sampler_eta=1.0 start_time='1.0' use_template=true separate_pdb=true visualize_sample_trajectories=false auxiliary_estimation_only=false esmfold_chunk_size=null trainer=gpu ```

For developers

Set up `pre-commit` (one time only) for automatic code linting and formatting upon each `git commit` ```bash pre-commit install ``` Manually reformat all files in the project, as desired ```bash pre-commit run -a ``` Update dependencies in a `*_environment.yml` file ```bash mamba env export > env.yaml # e.g., run this after installing new dependencies locally diff environments/flowdock_environment.yaml env.yaml # note the differences and copy accepted changes back into e.g., `environments/flowdock_environment.yaml` rm env.yaml # clean up temporary environment file ```

Docker

Given that this tool has a number of dependencies, it may be easier to run it in a Docker container. Pull from [Docker Hub](https://hub.docker.com/repository/docker/cford38/flowdock): `docker pull cford38/flowdock:latest` Alternatively, build the Docker image locally: ```bash docker build --platform linux/amd64 -t flowdock . ``` Then, run the Docker container (and mount your local `checkpoints/` directory) ```bash docker run --gpus all -v ./checkpoints:/software/flowdock/checkpoints --rm --name flowdock -it flowdock /bin/bash # docker run --gpus all -v ./checkpoints:/software/flowdock/checkpoints --rm --name flowdock -it cford38/flowdock:latest /bin/bash ```

Acknowledgements

FlowDock builds upon the source code and data from the following projects:

We thank all their contributors and maintainers!

License

This project is covered under the MIT License.

Citing this work

If you use the code or data associated with this package or otherwise find this work useful, please cite:

bibtex @inproceedings{morehead2025flowdock, title={FlowDock: Geometric Flow Matching for Generative Protein-Ligand Docking and Affinity Prediction}, author={Alex Morehead and Jianlin Cheng}, booktitle={Intelligent Systems for Molecular Biology (ISMB)}, year=2025, }

Owner

  • Name: BioinfoMachineLearning
  • Login: BioinfoMachineLearning
  • Kind: organization

Citation (citation.bib)

@inproceedings{morehead2025flowdock,
    title={FlowDock: Geometric Flow Matching for Generative Protein-Ligand Docking and Affinity Prediction}, 
    author={Alex Morehead and Jianlin Cheng},
    booktitle={Intelligent Systems for Molecular Biology (ISMB)},
    year=2025,
}

GitHub Events

Total
  • Create event: 4
  • Release event: 3
  • Issues event: 27
  • Watch event: 92
  • Delete event: 1
  • Issue comment event: 52
  • Push event: 27
  • Pull request event: 4
  • Fork event: 16
Last Year
  • Create event: 4
  • Release event: 3
  • Issues event: 27
  • Watch event: 92
  • Delete event: 1
  • Issue comment event: 52
  • Push event: 27
  • Pull request event: 4
  • Fork event: 16

Issues and Pull Requests

Last synced: 6 months ago

All Time
  • Total issues: 13
  • Total pull requests: 2
  • Average time to close issues: 1 day
  • Average time to close pull requests: 5 minutes
  • Total issue authors: 7
  • Total pull request authors: 2
  • Average comments per issue: 1.54
  • Average comments per pull request: 0.5
  • Merged pull requests: 2
  • Bot issues: 0
  • Bot pull requests: 0
Past Year
  • Issues: 13
  • Pull requests: 2
  • Average time to close issues: 1 day
  • Average time to close pull requests: 5 minutes
  • Issue authors: 7
  • Pull request authors: 2
  • Average comments per issue: 1.54
  • Average comments per pull request: 0.5
  • Merged pull requests: 2
  • Bot issues: 0
  • Bot pull requests: 0
Top Authors
Issue Authors
  • rjrich (5)
  • quangnguyenbn99 (2)
  • vinhsuhi (2)
  • NielsRogge (1)
  • Oriolol (1)
  • qhelleu (1)
  • jodypacalon (1)
Pull Request Authors
  • hopanoid (1)
  • amorehead (1)
  • ShuoAndy (1)
  • colbyford (1)
Top Labels
Issue Labels
Pull Request Labels

Dependencies

.github/workflows/code-quality-main.yaml actions
  • actions/checkout v2 composite
  • actions/setup-python v2 composite
  • pre-commit/action v2.0.3 composite
.github/workflows/code-quality-pr.yaml actions
  • actions/checkout v2 composite
  • actions/setup-python v2 composite
  • pre-commit/action v2.0.3 composite
  • trilom/file-changes-action v1.2.4 composite
.github/workflows/release-drafter.yml actions
  • release-drafter/release-drafter v5 composite
.github/workflows/test.yml actions
  • actions/checkout v3 composite
  • actions/checkout v2 composite
  • actions/setup-python v3 composite
  • actions/setup-python v2 composite
  • codecov/codecov-action v3 composite
pyproject.toml pypi
setup.py pypi
  • lightning *