@stdlib/stats-incr-mmaape

Compute a moving arctangent mean absolute percentage error (MAAPE) incrementally.

https://github.com/stdlib-js/stats-incr-mmaape

Science Score: 67.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
    Found CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
    Found .zenodo.json file
  • DOI references
    Found 1 DOI reference(s) in README
  • Academic publication links
    Links to: sciencedirect.com
  • Committers with academic emails
  • Institutional organization owner
  • JOSS paper metadata
  • Scientific vocabulary similarity
    Low similarity (13.4%) to scientific vocabulary

Keywords

abs absolute accumulator average avg err error incremental javascript maape mape math mathematics mean node node-js nodejs statistics stats stdlib
Last synced: 4 months ago · JSON representation ·

Repository

Compute a moving arctangent mean absolute percentage error (MAAPE) incrementally.

Basic Info
Statistics
  • Stars: 2
  • Watchers: 3
  • Forks: 0
  • Open Issues: 0
  • Releases: 0
Topics
abs absolute accumulator average avg err error incremental javascript maape mape math mathematics mean node node-js nodejs statistics stats stdlib
Created over 4 years ago · Last pushed 5 months ago
Metadata Files
Readme Changelog Contributing License Code of conduct Citation Security

README.md

About stdlib...

We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.

The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.

When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.

To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!

incrmmaape

NPM version Build Status Coverage Status <!-- dependencies -->

Compute a moving mean arctangent absolute percentage error (MAAPE) incrementally.

For a window of size `W`, the [mean arctangent absolute percentage error][@kim:2016a] is defined as ```math \mathop{\mathrm{MAAPE}} = \frac{1}{W} \sum_{i=0}^{W-1} \mathop{\mathrm{arctan}}\biggl( \biggl| \frac{a_i - f_i}{a_i} \biggr| \biggr) ``` where `f_i` is the forecast value and `a_i` is the actual value.
## Installation ```bash npm install @stdlib/stats-incr-mmaape ``` Alternatively, - To load the package in a website via a `script` tag without installation and bundlers, use the [ES Module][es-module] available on the [`esm`][esm-url] branch (see [README][esm-readme]). - If you are using Deno, visit the [`deno`][deno-url] branch (see [README][deno-readme] for usage intructions). - For use in Observable, or in browser/node environments, use the [Universal Module Definition (UMD)][umd] build available on the [`umd`][umd-url] branch (see [README][umd-readme]). The [branches.md][branches-url] file summarizes the available branches and displays a diagram illustrating their relationships. To view installation and usage instructions specific to each branch build, be sure to explicitly navigate to the respective README files on each branch, as linked to above.
## Usage ```javascript var incrmmaape = require( '@stdlib/stats-incr-mmaape' ); ``` #### incrmmaape( window ) Returns an accumulator `function` which incrementally computes a moving [mean arctangent absolute percentage error][@kim:2016a]. The `window` parameter defines the number of values over which to compute the moving [mean arctangent absolute percentage error][@kim:2016a]. ```javascript var accumulator = incrmmaape( 3 ); ``` #### accumulator( \[f, a] ) If provided input values `f` and `a`, the accumulator function returns an updated [mean arctangent absolute percentage error][@kim:2016a]. If not provided input values `f` and `a`, the accumulator function returns the current [mean arctangent absolute percentage error][@kim:2016a]. ```javascript var accumulator = incrmmaape( 3 ); var m = accumulator(); // returns null // Fill the window... m = accumulator( 2.0, 3.0 ); // [(2.0,3.0)] // returns ~0.32 m = accumulator( 1.0, 4.0 ); // [(2.0,3.0), (1.0,4.0)] // returns ~0.48 m = accumulator( 3.0, 9.0 ); // [(2.0,3.0), (1.0,4.0), (3.0,9.0)] // returns ~0.52 // Window begins sliding... m = accumulator( 7.0, 3.0 ); // [(1.0,4.0), (3.0,9.0), (7.0,3.0)] // returns ~0.72 m = accumulator( 5.0, 3.0 ); // [(3.0,9.0), (7.0,3.0), (5.0,3.0)] // returns ~0.70 m = accumulator(); // returns ~0.70 ```
## Notes - Input values are **not** type checked. If provided `NaN` or a value which, when used in computations, results in `NaN`, the accumulated value is `NaN` for **at least** `W-1` future invocations. If non-numeric inputs are possible, you are advised to type check and handle accordingly **before** passing the value to the accumulator function. - As `W` (f,a) pairs are needed to fill the window buffer, the first `W-1` returned values are calculated from smaller sample sizes. Until the window is full, each returned value is calculated from all provided values. - Note that, unlike the [mean absolute percentage error][@stdlib/stats/incr/mape] (MAPE), the [mean arctangent absolute percentage error][@kim:2016a] is expressed in radians on the interval \[0,π/2].
## Examples ```javascript var randu = require( '@stdlib/random-base-randu' ); var incrmmaape = require( '@stdlib/stats-incr-mmaape' ); var accumulator; var v1; var v2; var i; // Initialize an accumulator: accumulator = incrmmaape( 5 ); // For each simulated datum, update the moving mean arctangent absolute percentage error... for ( i = 0; i < 100; i++ ) { v1 = ( randu()*100.0 ) + 50.0; v2 = ( randu()*100.0 ) + 50.0; accumulator( v1, v2 ); } console.log( accumulator() ); ```
## References - Kim, Sungil, and Heeyoung Kim. 2016. "A new metric of absolute percentage error for intermittent demand forecasts." _International Journal of Forecasting_ 32 (3): 669–79. doi:[10.1016/j.ijforecast.2015.12.003][@kim:2016a].
* * * ## Notice This package is part of [stdlib][stdlib], a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more. For more information on the project, filing bug reports and feature requests, and guidance on how to develop [stdlib][stdlib], see the main project [repository][stdlib]. #### Community [![Chat][chat-image]][chat-url] --- ## License See [LICENSE][stdlib-license]. ## Copyright Copyright © 2016-2025. The Stdlib [Authors][stdlib-authors].

Owner

  • Name: stdlib
  • Login: stdlib-js
  • Kind: organization

Standard library for JavaScript.

Citation (CITATION.cff)

cff-version: 1.2.0
title: stdlib
message: >-
  If you use this software, please cite it using the
  metadata from this file.

type: software

authors:
  - name: The Stdlib Authors
    url: https://github.com/stdlib-js/stdlib/graphs/contributors

repository-code: https://github.com/stdlib-js/stdlib
url: https://stdlib.io

abstract: |
  Standard library for JavaScript and Node.js.

keywords:
  - JavaScript
  - Node.js
  - TypeScript
  - standard library
  - scientific computing
  - numerical computing
  - statistical computing

license: Apache-2.0 AND BSL-1.0

date-released: 2016

GitHub Events

Total
  • Push event: 26
Last Year
  • Push event: 26

Committers

Last synced: 9 months ago

All Time
  • Total Commits: 63
  • Total Committers: 1
  • Avg Commits per committer: 63.0
  • Development Distribution Score (DDS): 0.0
Past Year
  • Commits: 11
  • Committers: 1
  • Avg Commits per committer: 11.0
  • Development Distribution Score (DDS): 0.0
Top Committers
Name Email Commits
stdlib-bot n****y@s****o 63
Committer Domains (Top 20 + Academic)

Issues and Pull Requests

Last synced: 4 months ago

All Time
  • Total issues: 0
  • Total pull requests: 0
  • Average time to close issues: N/A
  • Average time to close pull requests: N/A
  • Total issue authors: 0
  • Total pull request authors: 0
  • Average comments per issue: 0
  • Average comments per pull request: 0
  • Merged pull requests: 0
  • Bot issues: 0
  • Bot pull requests: 0
Past Year
  • Issues: 0
  • Pull requests: 0
  • Average time to close issues: N/A
  • Average time to close pull requests: N/A
  • Issue authors: 0
  • Pull request authors: 0
  • Average comments per issue: 0
  • Average comments per pull request: 0
  • Merged pull requests: 0
  • Bot issues: 0
  • Bot pull requests: 0
Top Authors
Issue Authors
Pull Request Authors
Top Labels
Issue Labels
Pull Request Labels

Packages

  • Total packages: 1
  • Total downloads:
    • npm 80 last-month
  • Total dependent packages: 3
  • Total dependent repositories: 3
  • Total versions: 11
  • Total maintainers: 4
npmjs.org: @stdlib/stats-incr-mmaape

Compute a moving arctangent mean absolute percentage error (MAAPE) incrementally.

  • Homepage: https://stdlib.io
  • License: Apache-2.0
  • Latest release: 0.2.2
    published over 1 year ago
  • Versions: 11
  • Dependent Packages: 3
  • Dependent Repositories: 3
  • Downloads: 80 Last month
Rankings
Dependent packages count: 5.9%
Dependent repos count: 6.4%
Average: 11.1%
Downloads: 13.2%
Stargazers count: 14.5%
Forks count: 15.4%
Funding
  • type: opencollective
  • url: https://opencollective.com/stdlib
Last synced: 4 months ago

Dependencies

package.json npm
  • @stdlib/bench ^0.0.x development
  • @stdlib/constants-float64-eps ^0.0.x development
  • @stdlib/math-base-assert-is-nan ^0.0.x development
  • @stdlib/random-base-randu ^0.0.x development
  • istanbul ^0.4.1 development
  • tap-spec 5.x.x development
  • tape git+https://github.com/kgryte/tape.git#fix/globby development
  • @stdlib/assert-is-positive-integer ^0.0.x
  • @stdlib/math-base-special-abs ^0.0.x
  • @stdlib/math-base-special-atan ^0.0.x
  • @stdlib/stats-incr-mmean ^0.0.x
  • @stdlib/string-format ^0.0.x
  • @stdlib/types ^0.0.x
.github/workflows/benchmark.yml actions
  • actions/checkout v3 composite
  • actions/setup-node v3 composite
.github/workflows/cancel.yml actions
  • styfle/cancel-workflow-action 0.11.0 composite
.github/workflows/close_pull_requests.yml actions
  • superbrothers/close-pull-request v3 composite
.github/workflows/examples.yml actions
  • actions/checkout v3 composite
  • actions/setup-node v3 composite
.github/workflows/npm_downloads.yml actions
  • actions/checkout v3 composite
  • actions/setup-node v3 composite
  • actions/upload-artifact v3 composite
  • distributhor/workflow-webhook v3 composite
.github/workflows/productionize.yml actions
  • act10ns/slack v1 composite
  • actions/checkout v3 composite
  • actions/setup-node v3 composite
  • stdlib-js/bundle-action main composite
  • stdlib-js/transform-errors-action main composite
.github/workflows/publish.yml actions
  • JS-DevTools/npm-publish v1 composite
  • act10ns/slack v1 composite
  • actions/checkout v3 composite
  • actions/setup-node v3 composite
  • styfle/cancel-workflow-action 0.11.0 composite
.github/workflows/test.yml actions
  • act10ns/slack v1 composite
  • actions/checkout v3 composite
  • actions/setup-node v3 composite
.github/workflows/test_bundles.yml actions
  • act10ns/slack v1 composite
  • actions/checkout v3 composite
  • actions/setup-node v3 composite
  • denoland/setup-deno v1 composite
.github/workflows/test_coverage.yml actions
  • act10ns/slack v1 composite
  • actions/checkout v3 composite
  • actions/setup-node v3 composite
  • codecov/codecov-action v3 composite
  • distributhor/workflow-webhook v3 composite
.github/workflows/test_install.yml actions
  • act10ns/slack v1 composite
  • actions/checkout v3 composite
  • actions/setup-node v3 composite