PyClustering

PyClustering: Data Mining Library - Published in JOSS (2019)

https://github.com/annoviko/pyclustering

Science Score: 93.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
    Found .zenodo.json file
  • DOI references
    Found 13 DOI reference(s) in README and JOSS metadata
  • Academic publication links
    Links to: joss.theoj.org, zenodo.org
  • Committers with academic emails
  • Institutional organization owner
  • JOSS paper metadata
    Published in Journal of Open Source Software

Keywords

algorithms c-plus-plus clustering data-mining data-science machine-learning neural-networks oscillatory-networks python python3

Scientific Fields

Mathematics Computer Science - 40% confidence
Last synced: 4 months ago · JSON representation

Repository

pyclustering is a Python, C++ data mining library.

Basic Info
Statistics
  • Stars: 1,195
  • Watchers: 39
  • Forks: 257
  • Open Issues: 79
  • Releases: 18
Topics
algorithms c-plus-plus clustering data-mining data-science machine-learning neural-networks oscillatory-networks python python3
Created almost 12 years ago · Last pushed almost 2 years ago
Metadata Files
Readme Changelog License

README.rst

Warning - Attention Users
=========================

**Please be aware that the `pyclustering` library is no longer supported as of 2021 due to personal reasons. There will be no further maintenance, issue addressing, or feature development for this repository.**

**For continued usage, I recommend seeking alternative solutions.**

**Thank you for your understanding.**


Build Status
============

|Build Status Linux MacOS| |Build Status Win| |Coverage Status| |PyPi| |Download Counter| |JOSS|


PyClustering
============

**pyclustering** is a Python, C++ data mining library (clustering
algorithm, oscillatory networks, neural networks). The library provides
Python and C++ implementations (C++ pyclustering library) of each algorithm or
model. C++ pyclustering library is a part of pyclustering and supported for
Linux, Windows and MacOS operating systems.

**Version**: 0.11.dev

**License**: The 3-Clause BSD License

**E-Mail**: pyclustering@yandex.ru

**Documentation**: https://pyclustering.github.io/docs/0.10.1/html/

**Homepage**: https://pyclustering.github.io/

**PyClustering Wiki**: https://github.com/annoviko/pyclustering/wiki



Dependencies
============

**Required packages**: scipy, matplotlib, numpy, Pillow

**Python version**: >=3.6 (32-bit, 64-bit)

**C++ version**: >= 14 (32-bit, 64-bit)



Performance
===========

Each algorithm is implemented using Python and C/C++ language, if your platform is not supported then Python
implementation is used, otherwise C/C++. Implementation can be chosen by `ccore` flag (by default it is always
'True' and it means that C/C++ is used), for example:

.. code:: python

    # As by default - C/C++ part of the library is used
    xmeans_instance_1 = xmeans(data_points, start_centers, 20, ccore=True);

    # The same - C/C++ part of the library is used by default
    xmeans_instance_2 = xmeans(data_points, start_centers, 20);

    # Switch off core - Python is used
    xmeans_instance_3 = xmeans(data_points, start_centers, 20, ccore=False);



Installation
============

Installation using pip3 tool:

.. code:: bash

    $ pip3 install pyclustering

Manual installation from official repository using Makefile:

.. code:: bash

    # get sources of the pyclustering library, for example, from repository
    $ mkdir pyclustering
    $ cd pyclustering/
    $ git clone https://github.com/annoviko/pyclustering.git .

    # compile CCORE library (core of the pyclustering library).
    $ cd ccore/
    $ make ccore_64bit      # build for 64-bit OS

    # $ make ccore_32bit    # build for 32-bit OS

    # return to parent folder of the pyclustering library
    $ cd ../

    # install pyclustering library
    $ python3 setup.py install

    # optionally - test the library
    $ python3 setup.py test

Manual installation using CMake:

.. code:: bash

    # get sources of the pyclustering library, for example, from repository
    $ mkdir pyclustering
    $ cd pyclustering/
    $ git clone https://github.com/annoviko/pyclustering.git .

    # generate build files.
    $ mkdir build
    $ cmake ..

    # build pyclustering-shared target depending on what was generated (Makefile or MSVC solution)
    # if Makefile has been generated then
    $ make pyclustering-shared

    # return to parent folder of the pyclustering library
    $ cd ../

    # install pyclustering library
    $ python3 setup.py install

    # optionally - test the library
    $ python3 setup.py test

Manual installation using Microsoft Visual Studio solution:

1. Clone repository from: https://github.com/annoviko/pyclustering.git
2. Open folder `pyclustering/ccore`
3. Open Visual Studio project `ccore.sln`
4. Select solution platform: `x86` or `x64`
5. Build `pyclustering-shared` project.
6. Add pyclustering folder to python path or install it using setup.py

.. code:: bash

    # install pyclustering library
    $ python3 setup.py install

    # optionally - test the library
    $ python3 setup.py test



Proposals, Questions, Bugs
==========================

In case of any questions, proposals or bugs related to the pyclustering please contact to pyclustering@yandex.ru or create an issue here.



PyClustering Status
===================

+----------------------+------------------------------+-------------------------------------+---------------------------------+
| Branch               | master                       | 0.10.dev                            | 0.10.1.rel                      |
+======================+==============================+=====================================+=================================+
| Build (Linux, MacOS) | |Build Status Linux MacOS|   | |Build Status Linux MacOS 0.10.dev| | |Build Status Linux 0.10.1.rel| |
+----------------------+------------------------------+-------------------------------------+---------------------------------+
| Build (Win)          | |Build Status Win|           | |Build Status Win 0.10.dev|         | |Build Status Win 0.10.1.rel|   |
+----------------------+------------------------------+-------------------------------------+---------------------------------+
| Code Coverage        | |Coverage Status|            | |Coverage Status 0.10.dev|          | |Coverage Status 0.10.1.rel|    |
+----------------------+------------------------------+-------------------------------------+---------------------------------+



Cite the Library
================

If you are using pyclustering library in a scientific paper, please, cite the library:

Novikov, A., 2019. PyClustering: Data Mining Library. Journal of Open Source Software, 4(36), p.1230. Available at: http://dx.doi.org/10.21105/joss.01230.

BibTeX entry:

.. code::

    @article{Novikov2019,
        doi         = {10.21105/joss.01230},
        url         = {https://doi.org/10.21105/joss.01230},
        year        = 2019,
        month       = {apr},
        publisher   = {The Open Journal},
        volume      = {4},
        number      = {36},
        pages       = {1230},
        author      = {Andrei Novikov},
        title       = {{PyClustering}: Data Mining Library},
        journal     = {Journal of Open Source Software}
    }



Brief Overview of the Library Content
=====================================

**Clustering algorithms and methods (module pyclustering.cluster):**

+------------------------+---------+-----+
| Algorithm              | Python  | C++ |
+========================+=========+=====+
| Agglomerative          | ✓       | ✓   |
+------------------------+---------+-----+
| BANG                   | ✓       |     |
+------------------------+---------+-----+
| BIRCH                  | ✓       |     |
+------------------------+---------+-----+
| BSAS                   | ✓       | ✓   |
+------------------------+---------+-----+
| CLARANS                | ✓       |     |
+------------------------+---------+-----+
| CLIQUE                 | ✓       | ✓   |
+------------------------+---------+-----+
| CURE                   | ✓       | ✓   |
+------------------------+---------+-----+
| DBSCAN                 | ✓       | ✓   |
+------------------------+---------+-----+
| Elbow                  | ✓       | ✓   |
+------------------------+---------+-----+
| EMA                    | ✓       |     |
+------------------------+---------+-----+
| Fuzzy C-Means          | ✓       | ✓   |
+------------------------+---------+-----+
| GA (Genetic Algorithm) | ✓       | ✓   |
+------------------------+---------+-----+
| G-Means                | ✓       | ✓   |
+------------------------+---------+-----+
| HSyncNet               | ✓       | ✓   |
+------------------------+---------+-----+
| K-Means                | ✓       | ✓   |
+------------------------+---------+-----+
| K-Means++              | ✓       | ✓   |
+------------------------+---------+-----+
| K-Medians              | ✓       | ✓   |
+------------------------+---------+-----+
| K-Medoids              | ✓       | ✓   |
+------------------------+---------+-----+
| MBSAS                  | ✓       | ✓   |
+------------------------+---------+-----+
| OPTICS                 | ✓       | ✓   |
+------------------------+---------+-----+
| ROCK                   | ✓       | ✓   |
+------------------------+---------+-----+
| Silhouette             | ✓       | ✓   |
+------------------------+---------+-----+
| SOM-SC                 | ✓       | ✓   |
+------------------------+---------+-----+
| SyncNet                | ✓       | ✓   |
+------------------------+---------+-----+
| Sync-SOM               | ✓       |     |
+------------------------+---------+-----+
| TTSAS                  | ✓       | ✓   |
+------------------------+---------+-----+
| X-Means                | ✓       | ✓   |
+------------------------+---------+-----+


**Oscillatory networks and neural networks (module pyclustering.nnet):**

+--------------------------------------------------------------------------------+---------+-----+
| Model                                                                          | Python  | C++ |
+================================================================================+=========+=====+
| CNN (Chaotic Neural Network)                                                   | ✓       |     |
+--------------------------------------------------------------------------------+---------+-----+
| fSync (Oscillatory network based on Landau-Stuart equation and Kuramoto model) | ✓       |     |
+--------------------------------------------------------------------------------+---------+-----+
| HHN (Oscillatory network based on Hodgkin-Huxley model)                        | ✓       | ✓   |
+--------------------------------------------------------------------------------+---------+-----+
| Hysteresis Oscillatory Network                                                 | ✓       |     |
+--------------------------------------------------------------------------------+---------+-----+
| LEGION (Local Excitatory Global Inhibitory Oscillatory Network)                | ✓       | ✓   |
+--------------------------------------------------------------------------------+---------+-----+
| PCNN (Pulse-Coupled Neural Network)                                            | ✓       | ✓   |
+--------------------------------------------------------------------------------+---------+-----+
| SOM (Self-Organized Map)                                                       | ✓       | ✓   |
+--------------------------------------------------------------------------------+---------+-----+
| Sync (Oscillatory network based on Kuramoto model)                             | ✓       | ✓   |
+--------------------------------------------------------------------------------+---------+-----+
| SyncPR (Oscillatory network for pattern recognition)                           | ✓       | ✓   |
+--------------------------------------------------------------------------------+---------+-----+
| SyncSegm (Oscillatory network for image segmentation)                          | ✓       | ✓   |
+--------------------------------------------------------------------------------+---------+-----+


**Graph Coloring Algorithms (module pyclustering.gcolor):**

+------------------------+---------+-----+
| Algorithm              | Python  | C++ |
+========================+=========+=====+
| DSatur                 | ✓       |     |
+------------------------+---------+-----+
| Hysteresis             | ✓       |     |
+------------------------+---------+-----+
| GColorSync             | ✓       |     |
+------------------------+---------+-----+


**Containers (module pyclustering.container):**

+------------------------+---------+-----+
| Algorithm              | Python  | C++ |
+========================+=========+=====+
| KD Tree                | ✓       | ✓   |
+------------------------+---------+-----+
| CF Tree                | ✓       |     |
+------------------------+---------+-----+



Examples in the Library
=======================

The library contains examples for each algorithm and oscillatory network model:

**Clustering examples:** ``pyclustering/cluster/examples``

**Graph coloring examples:** ``pyclustering/gcolor/examples``

**Oscillatory network examples:** ``pyclustering/nnet/examples``

.. image:: https://github.com/annoviko/pyclustering/blob/master/docs/img/example_cluster_place.png
   :alt: Where are examples?



Code Examples
=============

**Data clustering by CURE algorithm**

.. code:: python

    from pyclustering.cluster import cluster_visualizer;
    from pyclustering.cluster.cure import cure;
    from pyclustering.utils import read_sample;
    from pyclustering.samples.definitions import FCPS_SAMPLES;

    # Input data in following format [ [0.1, 0.5], [0.3, 0.1], ... ].
    input_data = read_sample(FCPS_SAMPLES.SAMPLE_LSUN);

    # Allocate three clusters.
    cure_instance = cure(input_data, 3);
    cure_instance.process();
    clusters = cure_instance.get_clusters();

    # Visualize allocated clusters.
    visualizer = cluster_visualizer();
    visualizer.append_clusters(clusters, input_data);
    visualizer.show();

**Data clustering by K-Means algorithm**

.. code:: python

    from pyclustering.cluster.kmeans import kmeans, kmeans_visualizer
    from pyclustering.cluster.center_initializer import kmeans_plusplus_initializer
    from pyclustering.samples.definitions import FCPS_SAMPLES
    from pyclustering.utils import read_sample

    # Load list of points for cluster analysis.
    sample = read_sample(FCPS_SAMPLES.SAMPLE_TWO_DIAMONDS)

    # Prepare initial centers using K-Means++ method.
    initial_centers = kmeans_plusplus_initializer(sample, 2).initialize()

    # Create instance of K-Means algorithm with prepared centers.
    kmeans_instance = kmeans(sample, initial_centers)

    # Run cluster analysis and obtain results.
    kmeans_instance.process()
    clusters = kmeans_instance.get_clusters()
    final_centers = kmeans_instance.get_centers()

    # Visualize obtained results
    kmeans_visualizer.show_clusters(sample, clusters, final_centers)

**Data clustering by OPTICS algorithm**

.. code:: python

    from pyclustering.cluster import cluster_visualizer
    from pyclustering.cluster.optics import optics, ordering_analyser, ordering_visualizer
    from pyclustering.samples.definitions import FCPS_SAMPLES
    from pyclustering.utils import read_sample

    # Read sample for clustering from some file
    sample = read_sample(FCPS_SAMPLES.SAMPLE_LSUN)

    # Run cluster analysis where connectivity radius is bigger than real
    radius = 2.0
    neighbors = 3
    amount_of_clusters = 3
    optics_instance = optics(sample, radius, neighbors, amount_of_clusters)

    # Performs cluster analysis
    optics_instance.process()

    # Obtain results of clustering
    clusters = optics_instance.get_clusters()
    noise = optics_instance.get_noise()
    ordering = optics_instance.get_ordering()

    # Visualize ordering diagram
    analyser = ordering_analyser(ordering)
    ordering_visualizer.show_ordering_diagram(analyser, amount_of_clusters)

    # Visualize clustering results
    visualizer = cluster_visualizer()
    visualizer.append_clusters(clusters, sample)
    visualizer.show()

**Simulation of oscillatory network PCNN**

.. code:: python

    from pyclustering.nnet.pcnn import pcnn_network, pcnn_visualizer

    # Create Pulse-Coupled neural network with 10 oscillators.
    net = pcnn_network(10)

    # Perform simulation during 100 steps using binary external stimulus.
    dynamic = net.simulate(50, [1, 1, 1, 0, 0, 0, 0, 1, 1, 1])

    # Allocate synchronous ensembles from the output dynamic.
    ensembles = dynamic.allocate_sync_ensembles()

    # Show output dynamic.
    pcnn_visualizer.show_output_dynamic(dynamic, ensembles)

**Simulation of chaotic neural network CNN**

.. code:: python

    from pyclustering.cluster import cluster_visualizer
    from pyclustering.samples.definitions import SIMPLE_SAMPLES
    from pyclustering.utils import read_sample
    from pyclustering.nnet.cnn import cnn_network, cnn_visualizer

    # Load stimulus from file.
    stimulus = read_sample(SIMPLE_SAMPLES.SAMPLE_SIMPLE3)

    # Create chaotic neural network, amount of neurons should be equal to amount of stimulus.
    network_instance = cnn_network(len(stimulus))

    # Perform simulation during 100 steps.
    steps = 100
    output_dynamic = network_instance.simulate(steps, stimulus)

    # Display output dynamic of the network.
    cnn_visualizer.show_output_dynamic(output_dynamic)

    # Display dynamic matrix and observation matrix to show clustering phenomenon.
    cnn_visualizer.show_dynamic_matrix(output_dynamic)
    cnn_visualizer.show_observation_matrix(output_dynamic)

    # Visualize clustering results.
    clusters = output_dynamic.allocate_sync_ensembles(10)
    visualizer = cluster_visualizer()
    visualizer.append_clusters(clusters, stimulus)
    visualizer.show()



Illustrations
=============

**Cluster allocation on FCPS dataset collection by DBSCAN:**

.. image:: https://github.com/annoviko/pyclustering/blob/master/docs/img/fcps_cluster_analysis.png
   :alt: Clustering by DBSCAN

**Cluster allocation by OPTICS using cluster-ordering diagram:**

.. image:: https://github.com/annoviko/pyclustering/blob/master/docs/img/optics_example_clustering.png
   :alt: Clustering by OPTICS


**Partial synchronization (clustering) in Sync oscillatory network:**

.. image:: https://github.com/annoviko/pyclustering/blob/master/docs/img/sync_partial_synchronization.png
   :alt: Partial synchronization in Sync oscillatory network


**Cluster visualization by SOM (Self-Organized Feature Map)**

.. image:: https://github.com/annoviko/pyclustering/blob/master/docs/img/target_som_processing.png
   :alt: Cluster visualization by SOM



.. |Build Status Linux MacOS| image:: https://travis-ci.org/annoviko/pyclustering.svg?branch=master
   :target: https://travis-ci.org/annoviko/pyclustering
.. |Build Status Win| image:: https://ci.appveyor.com/api/projects/status/4uly2exfp49emwn0/branch/master?svg=true
   :target: https://ci.appveyor.com/project/annoviko/pyclustering/branch/master
.. |Coverage Status| image:: https://coveralls.io/repos/github/annoviko/pyclustering/badge.svg?branch=master&ts=1
   :target: https://coveralls.io/github/annoviko/pyclustering?branch=master
.. |DOI| image:: https://zenodo.org/badge/DOI/10.5281/zenodo.4280556.svg
   :target: https://doi.org/10.5281/zenodo.4280556
.. |PyPi| image:: https://badge.fury.io/py/pyclustering.svg
   :target: https://badge.fury.io/py/pyclustering
.. |Build Status Linux MacOS 0.10.dev| image:: https://travis-ci.org/annoviko/pyclustering.svg?branch=0.10.dev
   :target: https://travis-ci.org/annoviko/pyclustering
.. |Build Status Win 0.10.dev| image:: https://ci.appveyor.com/api/projects/status/4uly2exfp49emwn0/branch/0.10.dev?svg=true
   :target: https://ci.appveyor.com/project/annoviko/pyclustering/branch/0.9.dev
.. |Coverage Status 0.10.dev| image:: https://coveralls.io/repos/github/annoviko/pyclustering/badge.svg?branch=0.10.dev&ts=1
   :target: https://coveralls.io/github/annoviko/pyclustering?branch=0.9.dev
.. |Build Status Linux 0.10.1.rel| image:: https://travis-ci.org/annoviko/pyclustering.svg?branch=0.10.1.rel
   :target: https://travis-ci.org/annoviko/pyclustering
.. |Build Status Win 0.10.1.rel| image:: https://ci.appveyor.com/api/projects/status/4uly2exfp49emwn0/branch/0.10.1.rel?svg=true
   :target: https://ci.appveyor.com/project/annoviko/pyclustering/branch/0.10.1.rel
.. |Coverage Status 0.10.1.rel| image:: https://coveralls.io/repos/github/annoviko/pyclustering/badge.svg?branch=0.10.1.rel&ts=1
   :target: https://coveralls.io/github/annoviko/pyclustering?branch=0.10.1.rel
.. |Download Counter| image:: https://pepy.tech/badge/pyclustering
   :target: https://pepy.tech/project/pyclustering
.. |JOSS| image:: http://joss.theoj.org/papers/10.21105/joss.01230/status.svg
   :target: https://doi.org/10.21105/joss.01230

Owner

  • Name: Andrei Novikov
  • Login: annoviko
  • Kind: user
  • Location: Eindhoven, the Netherlands

PhD in Computer Science. Software Scientist at ThermoFisher Scientific.

JOSS Publication

PyClustering: Data Mining Library
Published
April 14, 2019
Volume 4, Issue 36, Page 1230
Authors
Andrei V. Novikov ORCID
Independent Researcher
Editor
Jack Poulson ORCID
Tags
pyclustering data mining clustering cluster analysis oscillatory network machine learning engineering python

Papers & Mentions

Total mentions: 2

Density Peaks Clustering by Zero-Pointed Samples of Regional Group Borders
Last synced: 2 months ago
Modified Needleman–Wunsch algorithm for clinical pathway clustering
Last synced: 2 months ago

GitHub Events

Total
  • Issues event: 2
  • Watch event: 33
  • Issue comment event: 1
  • Fork event: 8
Last Year
  • Issues event: 2
  • Watch event: 33
  • Issue comment event: 1
  • Fork event: 8

Committers

Last synced: 5 months ago

All Time
  • Total Commits: 1,977
  • Total Committers: 23
  • Avg Commits per committer: 85.957
  • Development Distribution Score (DDS): 0.126
Past Year
  • Commits: 0
  • Committers: 0
  • Avg Commits per committer: 0.0
  • Development Distribution Score (DDS): 0.0
Top Committers
Name Email Commits
annoviko s****r@y****u 1,728
Travis-CI p****g@y****u 73
annoviko a****o@e****m 70
Polladin p****n@r****u 45
U-DeBug010-PC\DeBug010 D****0@D****) 26
U-MegaAlex-Comp\MegaAlex M****x@M****) 11
Narine Hall n****0@g****m 4
U-NSN-INTRA\akukushk a****k@C****t 2
U-NSN-INTRA\annoviko a****o@C****t 2
abhishek792 a****2@g****m 2
André David a****h 2
annoviko a****v@n****m 1
andrey a****y@a****l 1
U-Alex-PC\Alex A****x@A****) 1
U-INT\Andrey.Novikov A****v@A****u 1
U-MainMachine\Андрей А****й@M****) 1
U-SIOUX\Novikova N****a@2****u 1
Alexey Reshetnyak a****k@y****u 1
Karthikeyan Singaravelan t****i@g****m 1
Krzysztof Adamkiewicz k****5@g****m 1
Maxim Bonnaerens m****m@b****e 1
Michał Zając m****c@g****m 1
romanimm g****t@2****h 1

Issues and Pull Requests

Last synced: 4 months ago

All Time
  • Total issues: 91
  • Total pull requests: 21
  • Average time to close issues: 5 months
  • Average time to close pull requests: about 2 months
  • Total issue authors: 37
  • Total pull request authors: 10
  • Average comments per issue: 1.08
  • Average comments per pull request: 0.62
  • Merged pull requests: 12
  • Bot issues: 0
  • Bot pull requests: 0
Past Year
  • Issues: 4
  • Pull requests: 0
  • Average time to close issues: N/A
  • Average time to close pull requests: N/A
  • Issue authors: 4
  • Pull request authors: 0
  • Average comments per issue: 0.25
  • Average comments per pull request: 0
  • Merged pull requests: 0
  • Bot issues: 0
  • Bot pull requests: 0
Top Authors
Issue Authors
  • annoviko (49)
  • EricCacciavillani (2)
  • yasirroni (2)
  • kno10 (2)
  • laurenleesc (2)
  • tirkarthi (2)
  • pushpendranathawat (2)
  • OH-AU (1)
  • LifeIsStrange (1)
  • Gabriel-p (1)
  • karna48 (1)
  • Baccano01 (1)
  • sagarsen78 (1)
  • alexgcsa (1)
  • imanirajian (1)
Pull Request Authors
  • annoviko (11)
  • Abelarm (2)
  • kno10 (2)
  • ian-curtis (1)
  • Bill2462 (1)
  • gl-yziquel (1)
  • JosephChataignon (1)
  • KulikDM (1)
  • djpasseyjr (1)
  • tirkarthi (1)
Top Labels
Issue Labels
Enhancement (16) Bug (14) Continuous Integration (9) Good First Issue (9) Testing (8) Proposal (8) Question (7) Optimization (7) Documentaion (5) Investigation (2) Duplication (1)
Pull Request Labels
Enhancement (4) Bug (2) Proposal (1) Optimization (1) Documentaion (1)

Packages

  • Total packages: 2
  • Total downloads:
    • pypi 20,651 last-month
  • Total docker downloads: 389
  • Total dependent packages: 11
    (may contain duplicates)
  • Total dependent repositories: 107
    (may contain duplicates)
  • Total versions: 21
  • Total maintainers: 1
pypi.org: pyclustering

pyclustring is a python data mining library

  • Versions: 17
  • Dependent Packages: 10
  • Dependent Repositories: 104
  • Downloads: 20,651 Last month
  • Docker Downloads: 389
Rankings
Dependent packages count: 1.0%
Downloads: 1.2%
Dependent repos count: 1.5%
Average: 1.9%
Stargazers count: 1.9%
Docker downloads count: 2.5%
Forks count: 3.4%
Maintainers (1)
Last synced: 4 months ago
conda-forge.org: pyclustering
  • Versions: 4
  • Dependent Packages: 1
  • Dependent Repositories: 3
Rankings
Forks count: 11.6%
Stargazers count: 12.4%
Average: 17.7%
Dependent repos count: 18.1%
Dependent packages count: 29.0%
Last synced: 4 months ago

Dependencies

setup.py pypi
  • Pillow >=5.2.0
  • matplotlib >=3.0.0
  • numpy >=1.15.2
  • scipy >=1.1.0
.github/workflows/build-pyclustering.yml actions
  • actions/checkout v1 composite
.github/workflows/test-pypi-installer.yml actions
  • actions/checkout v1 composite
.github/workflows/test-testpypi-installer.yml actions
  • actions/checkout v1 composite