proEQUIB
proEQUIB: IDL Library for Plasma Diagnostics and Abundance Analysis - Published in JOSS (2018)
Science Score: 95.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
○CITATION.cff file
-
✓codemeta.json file
Found codemeta.json file -
✓.zenodo.json file
Found .zenodo.json file -
✓DOI references
Found 27 DOI reference(s) in README and JOSS metadata -
✓Academic publication links
Links to: joss.theoj.org -
✓Committers with academic emails
1 of 2 committers (50.0%) from academic institutions -
○Institutional organization owner
-
✓JOSS paper metadata
Published in Journal of Open Source Software
Keywords
atomic-level-populations
chemical-elements
gdl
idl
idl-library
line-emissivities
proequib
statistical-equilibrium
Last synced: 6 months ago
·
JSON representation
Repository
proEQUIB - IDL/GDL Library for Plasma Diagnostics and Abundance Analysis
Basic Info
- Host: GitHub
- Owner: equib
- License: gpl-3.0
- Language: IDL
- Default Branch: master
- Homepage: https://equib.github.io/proEQUIB
- Size: 1.96 MB
Statistics
- Stars: 3
- Watchers: 0
- Forks: 2
- Open Issues: 0
- Releases: 3
Topics
atomic-level-populations
chemical-elements
gdl
idl
idl-library
line-emissivities
proequib
statistical-equilibrium
Created about 8 years ago
· Last pushed almost 2 years ago
Metadata Files
Readme
Contributing
License
Authors
README.rst
========
proEQUIB
========
.. image:: https://app.travis-ci.com/equib/pyEQUIB.svg?branch=master
:target: https://app.travis-ci.com/github/equib/proEQUIB
:alt: Build Status
.. image:: https://ci.appveyor.com/api/projects/status/ab7ad315c6xejw3c?svg=true
:target: https://ci.appveyor.com/project/danehkar/proequib
:alt: Build Status
.. image:: http://mybinder.org/badge.svg
:target: http://mybinder.org/repo/equib/proequib
:alt: Binder
.. image:: https://img.shields.io/badge/license-GPL-blue.svg
:target: https://github.com/equib/proEQUIB/blob/master/LICENSE
:alt: GitHub license
.. image:: https://img.shields.io/badge/DOI-10.5281/zenodo.1890336-blue.svg
:target: https://doi.org/10.5281/zenodo.1890336
:alt: Zenodo
.. image:: http://joss.theoj.org/papers/10.21105/joss.00899/status.svg
:target: https://doi.org/10.21105/joss.00899
:alt: JOSS
.. image:: https://mybinder.org/badge_logo.svg
:target: https://mybinder.org/v2/gh/equib/proEQUIB/HEAD?labpath=Notebooks.ipynb
Description
===========
The **proEQUIB** library is a collection of `Interactive Data Language `_ (IDL)/`GNU Data Language `_ (GDL) programs developed to perform plasma diagnostics and abundance analysis using emission line fluxes measured in ionzed nebulae. It uses the `AtomNeb IDL library `_ to read collision strengths and transition probabilities for collisionally excited lines (CEL), and recombination coefficients for recombination lines (RL). This IDL package can be used to determine interstellar extinctions, electron temperatures, electron densities, and ionic abundances from the measured fluxes of emission lines. It mainly contains the follwing API functions written purely in IDL/GDL:
* **API functions for collisionally excited lines (CEL)** have been developed based on the algorithm of the FORTRAN program `EQUIB `_ originally written in FORTRAN by `Howarth & Adams (1981) `_, extended and customized by other people (`R. Clegg, D. Ruffle, X.-W. Liu, C. Pritchet, B. Ercolano & R. Wesson `_). The program EQUIB calculates atomic level populations and line emissivities in statistical equilibrium in multi-level atoms for different physical conditions of the stratification layers where the chemical elements are ionized. Using the IDL/GDL implementation of the program EQUIB, electron temperatures, electron densities, and ionic abundances are determined from the measured fluxes of collisionally excited lines.
* **API functions for recombination lines (RL)** have been developed based on the algorithm of the recombination scripts by X. W. Liu and Y. Zhang from `output_mod.f90 `_ included in the FORTRAN program `MOCASSIN `_. These API functiosn are used to determine ionic abundances from recombination lines for some heavy element ions.
* **API functions for reddening and extinctions** have been developed according to the methods of the reddening law functions from `STSDAS IRAF Package `_, which are used to obtain interstellar extinctions and deredden measured fluxes based on different reddening laws.
Installation
============
Dependent IDL Packages
----------------------
* This package requires the following packages:
- `The IDL Astronomy User's Library `_
- `The AtomNeb IDL Library `_
- `IDL MCMC Hammer library `_ (currently not used!)
* To get this package with all the dependent packages, you can simply use ``git`` command as follows::
git clone --recursive https://github.com/equib/proEQUIB.git
Installation in IDL
-------------------
* To install the **proEQUIB** library in the Interactive Data Language (IDL), you need to add the path of this package directory to your IDL path. For more information about the path management in IDL, read `the tips for customizing IDL program path `_ provided by Harris Geospatial Solutions or `the IDL library installation note `_ by David Fanning in the Coyote IDL Library.
* This package requires IDL version 7.1 or later.
Installation in GDL
-------------------
* You can install the GNU Data Language (GDL) if you do not have it on your machine:
- Linux (Fedora):
.. code-block::
sudo dnf install gdl
- Linux (Ubuntu):
.. code-block::
sudo apt-get install gnudatalanguage
- OS X:
.. code-block::
brew install gnudatalanguage
- Windows: You can use the `GNU Data Language for Win32 `_ (Unofficial Version) or you can compile the `GitHub source `_ using Visual Studio 2015 as shown in `appveyor.yml `_.
* To install the **proEQUIB** library in GDL, you need to add the path of this package directory to your ``.gdl_startup`` file in your home directory:
.. code-block::
!PATH=!PATH + ':/home/proEQUIB/pro/'
!PATH=!PATH + ':/home/proEQUIB/externals/misc/'
!PATH=!PATH + ':/home/proEQUIB/externals/astron/pro/'
!PATH=!PATH + ':/home/proEQUIB/externals/atomneb/pro/'
You may also need to set ``GDL_STARTUP`` if you have not done in ``.bashrc`` (bash):
.. code-block::
export GDL_STARTUP=~/.gdl_startup
or in ``.tcshrc`` (cshrc):
.. code-block::
setenv GDL_STARTUP ~/.gdl_startup
* This package requires GDL version 0.9.8 or later.
How to Use
==========
The Documentation of the IDL functions provides in detail in the *API Documentation* (`equib.github.io/proEQUIB/doc `_).
See *Jupyter Notebooks*: `Notebooks.ipynb `_
Run *Jupyter Notebooks* on `Binder `_:
.. image:: https://mybinder.org/badge_logo.svg
:target: https://mybinder.org/v2/gh/equib/proEQUIB/HEAD?labpath=Notebooks.ipynb
There are three main object units:
* **Collision Unit** has the API functions for plasma diagnostics and abundance analysis of collisionally excited lines. Here are some examples of using *Collision* Unit:
- *Temperature*:
.. code-block:: idl
s2=obj_new('collision')
s2->set,['s','ii']
upper_levels='1,2,1,3/'
lower_levels='1,5/'
density = double(2550)
line_flux_ratio=double(10.753)
temperature=s2->calc_temperature(line_flux_ratio=line_flux_ratio, density=density, $
upper_levels=upper_levels, lower_levels=lower_levels)
print, "Electron Temperature:", temperature
which gives::
Electron Temperature: 7920.2865
- *Density*:
.. code-block:: idl
s2=obj_new('collision')
s2->set,['s','ii']
upper_levels='1,2/'
lower_levels='1,3/'
temperature=double(7000.0);
line_flux_ratio=double(1.506);
density=s2->calc_density(line_flux_ratio=line_flux_ratio, temperature=temperature, $
upper_levels=upper_levels, lower_levels=lower_levels)
print, "Electron Density:", density
which gives::
Electron Density: 2312.6395
- *Ionic Abundance*:
.. code-block:: idl
o3=obj_new('collision')
o3->set,['o','iii']
levels5007='3,4/'
temperature=double(10000.0)
density=double(5000.0)
iobs5007=double(1200.0)
Abb5007=o3->calc_abundance(temperature=temperature, density=density, $
line_flux=iobs5007, atomic_levels=levels5007)
print, 'N(O^2+)/N(H+):', Abb5007
which gives::
N(O^2+)/N(H+): 0.00041256231
- *Emissivity*:
.. code-block:: idl
o3=obj_new('collision')
o3->set,['o','iii']
levels5007='3,4/'
temperature=double(10000.0)
density=double(5000.0)
iobs5007=double(1200.0)
emis=o3->calc_emissivity(temperature=temperature, density=density, $
atomic_levels=levels5007)
print, 'Emissivity(O III 5007):', emis
which gives::
Emissivity(O III 5007): 3.6041012e-21
- *Atomic Level Population*:
.. code-block:: idl
s2=obj_new('collision')
s2->set,['s','ii']
density = double(1000)
temperature=double(10000.0);
Nlj=s2->calc_populations(temperature=temperature, density=density)
print, 'Populations:', Nlj
which prints::
Populations: 0.96992832 0.0070036315 0.023062261 2.6593671e-06 3.1277019e-06
- *Critical Density*:
.. code-block:: idl
s2=obj_new('collision')
s2->set,['s','ii']
temperature=double(10000.0)
N_crit=s2->calc_crit_density(temperature=temperature)
print, 'Critical Densities:', N_crit
which gives::
Critical Densities: 0.0000000 5007.8396 1732.8414 1072685.0 2220758.1
- *All Ionic Level Information*:
.. code-block:: idl
o3=obj_new('collision')
o3->set,['o','iii']
temperature=double(10000.0)
density=double(5000.0)
o3->print_ionic, temperature=temperature, density=density
which gives::
Temperature = 10000.0 K
Density = 1000.0 cm-3
Level Populations Critical Densities
Level 1: 3.063E-01 0.000E+00
Level 2: 4.896E-01 4.908E+02
Level 3: 2.041E-01 3.419E+03
Level 4: 4.427E-05 6.853E+05
Level 5: 2.985E-09 2.547E+07
2.597E-05
88.34um
(2-->1)
2.859E-22
0.000E+00 9.632E-05
32.66um 51.81um
(3-->1) (3-->2)
0.000E+00 7.536E-22
2.322E-06 6.791E-03 2.046E-02
4932.60A 4960.29A 5008.24A
(4-->1) (4-->2) (4-->3)
4.140E-25 1.204E-21 3.593E-21
0.000E+00 2.255E-01 6.998E-04 1.685E+00
2315.58A 2321.67A 2332.12A 4364.45A
(5-->1) (5-->2) (5-->3) (5-->4)
0.000E+00 5.759E-24 1.779E-26 2.289E-23
H-beta emissivity: 1.237E-25 N(H+) Ne [erg/s]
* **Recombination Unit** has the API functions for plasma diagnostics and abundance analysis of recombination lines. Here are some examples of using *Recombination* Unit:
- *He+ Ionic Abundance*:
.. code-block:: idl
he1=obj_new('recombination')
he1->set,['he','ii'] ; He I
temperature=double(10000.0)
density=double(5000.0)
he_i_4471_flux= 2.104
linenum=10; 4471.50
Abund_he_i=he1->calc_abundance(temperature=temperature, density=density, $
linenum=linenum, line_flux=he_i_4471_flux)
print, 'N(He^+)/N(H^+):', Abund_he_i
which gives::
N(He^+)/N(H^+): 0.040848393
- *He++ Ionic Abundance*:
.. code-block:: idl
he2=obj_new('recombination')
he2->set,['he','iii'] ; He II
temperature=double(10000.0)
density=double(5000.0)
he_ii_4686_flux = 135.833
Abund_he_ii=he2->calc_abundance(temperature=temperature, density=density, $
line_flux=he_ii_4686_flux)
print, 'N(He^2+)/N(H^+):', Abund_he_ii
which gives::
N(He^2+)/N(H^+): 0.11228817
- *C++ Ionic Abundance*:
.. code-block:: idl
c2=obj_new('recombination')
c2->set,['c','iii'] ; C II
temperature=double(10000.0)
density=double(5000.0)
wavelength=6151.43
c_ii_6151_flux = 0.028
Abund_c_ii=c2->calc_abundance(temperature=temperature, density=density, $
wavelength=wavelength, line_flux=c_ii_6151_flux)
print, 'N(C^2+)/N(H+):', Abund_c_ii
which gives::
N(C^2+)/N(H+): 0.00063404650
- *C3+ Ionic Abundance*:
.. code-block:: idl
c3=obj_new('recombination')
c3->set,['c','iv'] ; C III
temperature=double(10000.0)
density=double(5000.0)
wavelength=4647.42
c_iii_4647_flux = 0.107
Abund_c_iii=c3->calc_abundance(temperature=temperature, density=density, $
wavelength=wavelength, line_flux=c_iii_4647_flux)
print, 'N(C^3+)/N(H+):', Abund_c_iii
which gives::
N(C^3+)/N(H+): 0.00017502840
- *N++ Ionic Abundance*:
.. code-block:: idl
n2=obj_new('recombination')
n2->set,['n','iii'] ; N II
wavelength=4442.02
n_ii_4442_flux = 0.017
Abund_n_ii=n2->calc_abundance(temperature=temperature, density=density, $
wavelength=wavelength, line_flux=n_ii_4442_flux)
print, 'N(N^2+)/N(H+):', Abund_n_ii
which gives::
N(N^2+)/N(H+): 0.00069297541
- *N3+ Ionic Abundance*:
.. code-block:: idl
n3=obj_new('recombination')
n3->set,['n','iv'] ; N III
wavelength=4640.64
n_iii_4641_flux = 0.245
Abund_n_iii=n3->calc_abundance(temperature=temperature, density=density, $
wavelength=wavelength, line_flux=n_iii_4641_flux)
print, 'N(N^3+)/N(H+):', Abund_n_iii
which gives::
N(N^3+)/N(H+): 6.3366175e-05
- *O++ Ionic Abundance*:
.. code-block:: idl
o2=obj_new('recombination')
o2->set,['o','iii'] ; O II
wavelength=4613.68
o_ii_4614_flux = 0.009
Abund_o_ii=o2->calc_abundance(temperature=temperature, density=density, $
wavelength=wavelength, line_flux=o_ii_4614_flux)
print, 'N(O^2+)/N(H+):', Abund_o_ii
which gives::
N(O^2+)/N(H+): 0.0018886330
- *Ne++ Ionic Abundance*:
.. code-block:: idl
ne2=obj_new('recombination')
ne2->set,['ne','iii'] ; Ne II
wavelength=3777.14
ne_ii_3777_flux = 0.056
Abund_ne_ii=ne2->calc_abundance(temperature=temperature, density=density, $
wavelength=wavelength, line_flux=ne_ii_3777_flux)
print, 'N(Ne^2+)/N(H+):', Abund_ne_ii
which gives::
N(Ne^2+)/N(H+): 0.00043376850
- *He I Emissivity*:
.. code-block:: idl
he1=obj_new('recombination')
he1->set,['he','ii'] ; He I
temperature=double(10000.0)
density=double(5000.0)
linenum=10; 4471.50
emiss_he_i=he1->calc_emissivity(temperature=temperature, density=density, $
linenum=linenum)
print, 'He I Emissivity:', emiss_he_i
which gives::
He I Emissivity: 6.3822830e-26
- *He II Emissivity*:
.. code-block:: idl
he2=obj_new('recombination')
he2->set,['he','iii'] ; He II
temperature=double(10000.0)
density=double(5000.0)
emiss_he_ii=he2->calc_emissivity(temperature=temperature, density=density)
print, 'He II Emissivity:', emiss_he_ii
which gives::
He II Emissivity: 1.4989134e-24
- *C II Emissivity*:
.. code-block:: idl
c2=obj_new('recombination')
c2->set,['c','iii'] ; C II
temperature=double(10000.0)
density=double(5000.0)
wavelength=6151.43
emiss_c_ii=c2->calc_emissivity(temperature=temperature, density=density, $
wavelength=wavelength)
print, 'C II Emissivity:', emiss_c_ii
which gives::
C II Emissivity: 5.4719511e-26
- *C III Emissivity*:
.. code-block:: idl
c3=obj_new('recombination')
c3->set,['c','iv'] ; C III
temperature=double(10000.0)
density=double(5000.0)
wavelength=4647.42
emiss_c_iii=c3->calc_emissivity(temperature=temperature, density=density, $
wavelength=wavelength)
print, 'C III Emissivity:', emiss_c_iii
which gives::
C III Emissivity: 7.5749632e-25
- *N II Emissivity*:
.. code-block:: idl
n2=obj_new('recombination')
n2->set,['n','iii'] ; N II
wavelength=4442.02
emiss_n_ii=n2->calc_emissivity(temperature=temperature, density=density, $
wavelength=wavelength)
print, 'N II Emissivity:', emiss_n_ii
which gives::
N II Emissivity: 3.0397397e-26
- *N III Emissivity*:
.. code-block:: idl
n3=obj_new('recombination')
n3->set,['n','iv'] ; N III
wavelength=4640.64
emiss_n_iii=n3->calc_emissivity(temperature=temperature, density=density, $
wavelength=wavelength)
print, 'N III Emissivity:', emiss_n_iii
which gives::
N III Emissivity: 4.7908644e-24
- *O II Emissivity*:
.. code-block:: idl
o2=obj_new('recombination')
o2->set,['o','iii'] ; O II
wavelength=4613.68
emiss_o_ii=o2->calc_emissivity(temperature=temperature, density=density, $
wavelength=wavelength)
print, 'O II Emissivity:', emiss_o_ii
which gives::
O II Emissivity: 5.9047319e-27
- *Ne II Emissivity*:
.. code-block:: idl
ne2=obj_new('recombination')
ne2->set,['ne','iii'] ; Ne II
wavelength=3777.14
emiss_ne_ii=ne2->calc_emissivity(temperature=temperature, density=density, $
wavelength=wavelength)
print, 'Ne II Emissivity:', emiss_ne_ii
which gives::
Ne II Emissivity: 1.5996881e-25
* **Reddening Unit** has the API functions for estimating logarithmic extinctions at H-beta and dereddening observed fluxes based on reddening laws and extinctions. Here are some examples of using *Reddening* Unit:
- *Reddening Law Function*:
.. code-block:: idl
ext=obj_new('reddening')
wavelength=6563.0
R_V=3.1
fl=ext->redlaw(wavelength, rv=R_V, ext_law='GAL')
print, 'fl(6563):', fl
which gives::
fl(6563): -0.32013816
- *Galactic Reddening Law Function based on Seaton (1979), Howarth (1983), & CCM (1983)*:
.. code-block:: idl
ext=obj_new('reddening')
wavelength=6563.0
R_V=3.1
fl=ext->redlaw_gal(wavelength, rv=R_V)
print, 'fl(6563):', fl
which gives::
fl(6563): -0.32013816
- *Galactic Reddening Law Function based on Savage & Mathis (1979)*:
.. code-block:: idl
ext=obj_new('reddening')
wavelength=6563.0
fl=ext->redlaw_gal2(wavelength)
print, 'fl(6563):', fl
which gives::
fl(6563): -0.30925984
- *Reddening Law Function based on Cardelli, Clayton & Mathis (1989)*:
.. code-block:: idl
ext=obj_new('reddening')
wavelength=6563.0
R_V=3.1
fl=ext->redlaw_ccm(wavelength, rv=R_V)
print, 'fl(6563):', fl
which gives::
fl(6563): -0.29756615
- *Galactic Reddening Law Function based on Whitford (1958), Seaton (1977), & Kaler(1976)*:
.. code-block:: idl
ext=obj_new('reddening')
wavelength=6563.0
fl=ext->redlaw_jbk(wavelength)
print, 'fl(6563):', fl
which gives::
fl(6563): -0.33113684
- *Reddening Law Function based on Fitzpatrick & Massa (1990), Fitzpatrick (1999), Misselt (1999)*:
.. code-block:: idl
ext=obj_new('reddening')
wavelength=6563.0
R_V=3.1
fmlaw='AVGLMC'
fl=ext->redlaw_fm(wavelength, fmlaw=fmlaw, rv=R_V)
print, 'fl(6563):', fl
which gives::
fl(6563): -0.35053032
- *Reddening Law Function for the Small Magellanic Cloud*:
.. code-block:: idl
ext=obj_new('reddening')
wavelength=6563.0
fl=ext->redlaw_smc(wavelength)
print, 'fl(6563):', fl
which gives::
fl(6563): -0.22659261
- *Reddening Law Function for the Large Magellanic Cloud*:
.. code-block:: idl
ext=obj_new('reddening')
wavelength=6563.0
fl=ext->redlaw_lmc(wavelength)
print, 'fl(6563):', fl
which gives::
fl(6563): -0.30871187
- *Dereddening Relative Flux*:
.. code-block:: idl
ext=obj_new('reddening')
wavelength=6563.0
m_ext=1.0
flux=1.0
ext_law='GAL'
R_V=3.1
flux_deredden=ext->deredden_relflux(wavelength, flux, m_ext, ext_law=ext_law, rv=R_V)
print, 'dereddened flux(6563)', flux_deredden
which gives::
dereddened flux(6563) 0.47847785
- *Dereddening Absolute Flux*:
.. code-block:: idl
ext=obj_new('reddening')
wavelength=6563.0
m_ext=1.0
flux=1.0
ext_law='GAL'
R_V=3.1
flux_deredden=ext->deredden_flux(wavelength, flux, m_ext, ext_law=ext_law, rv=R_V)
print, 'dereddened flux(6563)', flux_deredden
which gives::
dereddened flux(6563) 4.7847785
Documentation
=============
For more information on how to use the API functions from the proEQUIB libray, please read the `API Documentation `_ published on `equib.github.io/proEQUIB `_.
References
==========
* Danehkar, A. (2018). proEQUIB: IDL Library for Plasma Diagnostics and Abundance Analysis. *J. Open Source Softw.*, **3**, 899. doi: `10.21105/joss.00899 `_ ads: `2018JOSS....3..899D `_.
* Danehkar, A. (2020). pyEQUIB Python Package, an addendum to proEQUIB: IDL Library for Plasma Diagnostics and Abundance Analysis. *J. Open Source Softw.*, **5**, 2798. doi: `10.21105/joss.02798 `_ ads: `2020JOSS....5.2798D `_.
* Danehkar, A. (2018). Bi-Abundance Ionisation Structure of the Wolf-Rayet Planetary Nebula PB 8, *PASA*, **35**, e005. doi: `10.1017/pasa.2018.1 `_ ads: `2018PASA...35....5D `_.
* Danehkar, A. (2021). Physical and Chemical Properties of Wolf-Rayet Planetary Nebulae, *ApJS*, **257**, 58. doi: `10.3847/1538-4365/ac2310 `_ ads: `2021ApJS..257...58D `_.
Citation
========
Using the **proEQUIB** IDL library in a scholarly publication? Please cite these papers:
.. code-block:: bibtex
@article{Danehkar2018,
author = {{Danehkar}, Ashkbiz},
title = {proEQUIB: IDL Library for Plasma Diagnostics and Abundance Analysis},
journal = {Journal of Open Source Software},
volume = {3},
number = {32},
pages = {899},
year = {2018},
doi = {10.21105/joss.00899}
}
and if you use the `pyEQUIB `_ Python package:
.. code-block:: bibtex
@article{Danehkar2020,
author = {{Danehkar}, Ashkbiz},
title = {pyEQUIB Python Package, an addendum to proEQUIB: IDL Library
for Plasma Diagnostics and Abundance Analysis},
journal = {Journal of Open Source Software},
volume = {5},
number = {55},
pages = {2798},
year = {2020},
doi = {10.21105/joss.02798}
}
Learn More
==========
================== =============================================
**Documentation** https://equib.github.io/proEQUIB/doc/
**Repository** https://github.com/equib/proEQUIB
**Issues & Ideas** https://github.com/equib/proEQUIB/issues
**DOI** `10.21105/joss.00899 `_
**Archive** `10.5281/zenodo.1890336 `_
================== =============================================
Owner
- Name: EQUIB
- Login: equib
- Kind: organization
- Repositories: 3
- Profile: https://github.com/equib
Plasma Diagnostics & Abundance Analysis of Ionized Nebulae
JOSS Publication
proEQUIB: IDL Library for Plasma Diagnostics and Abundance Analysis
Published
December 04, 2018
Volume 3, Issue 32, Page 899
Authors
Tags
astrophysics gaseous nebulae plasma diagnostics abundance analysis GDLGitHub Events
Total
Last Year
Committers
Last synced: 7 months ago
Top Committers
| Name | Commits | |
|---|---|---|
| Ashkbiz Danehkar | a****r@g****m | 202 |
| Mark Piper | m****r@c****u | 1 |
Committer Domains (Top 20 + Academic)
colorado.edu: 1
Issues and Pull Requests
Last synced: 6 months ago
All Time
- Total issues: 4
- Total pull requests: 2
- Average time to close issues: 3 months
- Average time to close pull requests: 4 days
- Total issue authors: 1
- Total pull request authors: 2
- Average comments per issue: 1.5
- Average comments per pull request: 0.0
- Merged pull requests: 2
- Bot issues: 0
- Bot pull requests: 0
Past Year
- Issues: 0
- Pull requests: 0
- Average time to close issues: N/A
- Average time to close pull requests: N/A
- Issue authors: 0
- Pull request authors: 0
- Average comments per issue: 0
- Average comments per pull request: 0
- Merged pull requests: 0
- Bot issues: 0
- Bot pull requests: 0
Top Authors
Issue Authors
- mdpiper (4)
Pull Request Authors
- mdpiper (1)
- danehkar (1)
Top Labels
Issue Labels
Pull Request Labels
Dependencies
setup.py
pypi
- IPython *
- pexpect >=3.3
