prince
:crown: Multivariate exploratory data analysis in Python — PCA, CA, MCA, MFA, FAMD, GPA
Science Score: 54.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
✓CITATION.cff file
Found CITATION.cff file -
✓codemeta.json file
Found codemeta.json file -
✓.zenodo.json file
Found .zenodo.json file -
○DOI references
-
○Academic publication links
-
✓Committers with academic emails
3 of 15 committers (20.0%) from academic institutions -
○Institutional organization owner
-
○JOSS paper metadata
-
○Scientific vocabulary similarity
Low similarity (11.3%) to scientific vocabulary
Keywords
Keywords from Contributors
Repository
:crown: Multivariate exploratory data analysis in Python — PCA, CA, MCA, MFA, FAMD, GPA
Basic Info
- Host: GitHub
- Owner: MaxHalford
- License: mit
- Language: Python
- Default Branch: master
- Homepage: https://maxhalford.github.io/prince
- Size: 8.54 MB
Statistics
- Stars: 1,396
- Watchers: 26
- Forks: 186
- Open Issues: 0
- Releases: 0
Topics
Metadata Files
README.md
Prince is a Python library for multivariate exploratory data analysis in Python. It includes a variety of methods for summarizing tabular data, including principal component analysis (PCA) and correspondence analysis (CA). Prince provides efficient implementations, using a scikit-learn API.
I made Prince when I was at university, back in 2016. I spent a significant amount of time in 2022 to revamp the entire package. It is thoroughly tested and supports many features, such as supplementary row/columns, as well as row/column weights.
Example usage
```py
import prince
dataset = prince.datasets.load_decathlon() decastar = dataset.query('competition == "Decastar"')
pca = prince.PCA(ncomponents=5) pca = pca.fit(decastar, supplementarycolumns=['rank', 'points']) pca.eigenvalues_summary eigenvalue % of variance % of variance (cumulative) component 0 3.114 31.14% 31.14% 1 2.027 20.27% 51.41% 2 1.390 13.90% 65.31% 3 1.321 13.21% 78.52% 4 0.861 8.61% 87.13%
pca.transform(dataset).tail() component 0 1 2 3 4 competition athlete OlympicG Lorenzo 2.070933 1.545461 -1.272104 -0.215067 -0.515746 Karlivans 1.321239 1.318348 0.138303 -0.175566 -1.484658 Korkizoglou -0.756226 -1.975769 0.701975 -0.642077 -2.621566 Uldal 1.905276 -0.062984 -0.370408 -0.007944 -2.040579 Casarsa 2.282575 -2.150282 2.601953 1.196523 -3.571794
```
```py
chart = pca.plot(dataset)
```
This chart is interactive, which doesn't show on GitHub. The green points are the column loadings.
```py
chart = pca.plot( ... dataset, ... showrowlabels=True, ... showrowmarkers=False, ... rowlabelscolumn='athlete', ... colorrowsby='competition' ... )
```
Installation
sh
pip install prince
🎨 Prince uses Altair for making charts.
Methods
mermaid
flowchart TD
cat?(Categorical data?) --> |"✅"| num_too?(Numerical data too?)
num_too? --> |"✅"| FAMD
num_too? --> |"❌"| multiple_cat?(More than two columns?)
multiple_cat? --> |"✅"| MCA
multiple_cat? --> |"❌"| CA
cat? --> |"❌"| groups?(Groups of columns?)
groups? --> |"✅"| MFA
groups? --> |"❌"| shapes?(Analysing shapes?)
shapes? --> |"✅"| GPA
shapes? --> |"❌"| PCA
Principal component analysis (PCA)
Correspondence analysis (CA)
Multiple correspondence analysis (MCA)
Multiple factor analysis (MFA)
Factor analysis of mixed data (FAMD)
Generalized procrustes analysis (GPA)
Correctness
Prince is tested against scikit-learn and FactoMineR. For the latter, rpy2 is used to run code in R, and convert the results to Python, which allows running automated tests. See more in the tests directory.
Citation
Please use this citation if you use this software as part of a scientific publication.
bibtex
@software{Halford_Prince,
author = {Halford, Max},
license = {MIT},
title = {{Prince}},
url = {https://github.com/MaxHalford/prince}
}
License
The MIT License (MIT). Please see the license file for more information.
Owner
- Name: Max Halford
- Login: MaxHalford
- Kind: user
- Location: France
- Company: @carbonfact
- Website: maxhalford.github.io
- Repositories: 87
- Profile: https://github.com/MaxHalford
🌱 Head of Data @carbonfact
Citation (CITATION.cff)
# This CITATION.cff file was generated with cffinit.
# Visit https://bit.ly/cffinit to generate yours today!
cff-version: 1.2.0
title: Prince
message: >-
Please use this citation if you use this software as part
of a scientific publication.
type: software
authors:
- given-names: Max
family-names: Halford
email: maxhalford25@gmail.com
orcid: "https://orcid.org/0000-0003-1464-4520"
repository-code: "https://github.com/MaxHalford/prince"
url: "https://maxhalford.github.io/prince"
abstract: "Factor analysis in Python: PCA, CA, MCA, MFA, FAMD, GPA"
license: MIT
GitHub Events
Total
- Issues event: 7
- Watch event: 119
- Delete event: 7
- Issue comment event: 10
- Push event: 26
- Pull request event: 15
- Fork event: 7
- Create event: 7
Last Year
- Issues event: 7
- Watch event: 119
- Delete event: 7
- Issue comment event: 10
- Push event: 26
- Pull request event: 15
- Fork event: 7
- Create event: 7
Committers
Last synced: 9 months ago
Top Committers
| Name | Commits | |
|---|---|---|
| Max Halford | m****5@g****m | 363 |
| Charles Guan | c****n@c****u | 10 |
| Macarena Fernandez Urquiza | m****a@g****m | 5 |
| dependabot[bot] | 4****] | 4 |
| Francis Lacoste | f****e@s****m | 4 |
| Maxime | m****5@c****u | 3 |
| Jose D. Hernandez-Betancur | 4****e | 3 |
| Mario Kahlhofer | m****r@j****t | 2 |
| Franck Pommereau | f****u@g****m | 2 |
| Uziel Linares | u****z@g****m | 2 |
| regonn | p****r@r****z | 1 |
| Steven Moran | b****t@g****m | 1 |
| Serhii Kupriienko | s****o@a****m | 1 |
| Matthew Calcote | m****e@c****m | 1 |
| Liutong Zhou | l****u@c****u | 1 |
Committer Domains (Top 20 + Academic)
Issues and Pull Requests
Last synced: 6 months ago
All Time
- Total issues: 98
- Total pull requests: 35
- Average time to close issues: about 1 year
- Average time to close pull requests: about 1 month
- Total issue authors: 93
- Total pull request authors: 14
- Average comments per issue: 3.43
- Average comments per pull request: 1.26
- Merged pull requests: 25
- Bot issues: 0
- Bot pull requests: 11
Past Year
- Issues: 2
- Pull requests: 12
- Average time to close issues: about 2 hours
- Average time to close pull requests: 8 days
- Issue authors: 2
- Pull request authors: 3
- Average comments per issue: 2.5
- Average comments per pull request: 1.25
- Merged pull requests: 5
- Bot issues: 0
- Bot pull requests: 7
Top Authors
Issue Authors
- normanius (3)
- Melkaz (2)
- luesibuesi (2)
- adeebabdulsalam (2)
- m1ngle (1)
- luismavs (1)
- dialvarezs (1)
- nico695 (1)
- babinu-uthup-4JESUS-zz (1)
- wayfarer91-tog (1)
- kabirmdasraful (1)
- lenafm (1)
- ghost (1)
- christophe-williams (1)
- noemifasties (1)
Pull Request Authors
- dependabot[bot] (19)
- MaxHalford (12)
- flacoste (3)
- MaximeKan (2)
- SR42 (1)
- skupr-anaconda (1)
- fpom (1)
- macfernandez (1)
- jodhernandezbe (1)
- charlesincharge (1)
- ulinares (1)
- bambooforest (1)
- Vaseekaran-V (1)
- blu3r4y (1)
Top Labels
Issue Labels
Pull Request Labels
Packages
- Total packages: 3
-
Total downloads:
- pypi 257,178 last-month
- Total docker downloads: 85
-
Total dependent packages: 6
(may contain duplicates) -
Total dependent repositories: 101
(may contain duplicates) - Total versions: 69
- Total maintainers: 1
pypi.org: prince
Factor analysis in Python: PCA, CA, MCA, MFA, FAMD, GPA
- Documentation: https://prince.readthedocs.io/
- License: mit
-
Latest release: 0.16.1
published 7 months ago
Rankings
Maintainers (1)
conda-forge.org: prince-factor-analysis
- Homepage: https://github.com/MaxHalford/prince
- License: MIT
-
Latest release: 0.7.1
published over 5 years ago
Rankings
anaconda.org: prince
Prince is a Python library for multivariate exploratory data analysis in Python. It includes a variety of methods for summarizing tabular data, including principal component analysis (PCA) and correspondence analysis (CA). Prince provides efficient implementations, using a scikit-learn API.
- Homepage: https://maxhalford.github.io/prince
- License: MIT
-
Latest release: 0.16.0
published 7 months ago
Rankings
Dependencies
- actions/cache v3 composite
- actions/checkout v3 composite
- actions/setup-python v4 composite
- r-lib/actions/setup-r v2 composite
- r-lib/actions/setup-r-dependencies v2 composite
- snok/install-poetry v1 composite
- ./.github/actions/install-env * composite
- actions/checkout v3 composite
- ./.github/actions/install-env * composite
- actions/checkout v3 composite
- actions/configure-pages v3 composite
- actions/deploy-pages v1 composite
- actions/upload-pages-artifact v1 composite
- ./.github/actions/install-env * composite
- actions/checkout v3 composite
- FactoMineR * imports
- altair 4.2.2
- appnope 0.1.3
- asttokens 2.2.1
- attrs 23.1.0
- backcall 0.2.0
- backports-zoneinfo 0.2.1
- beautifulsoup4 4.12.2
- black 22.12.0
- bleach 6.0.0
- cffi 1.15.1
- cfgv 3.3.1
- click 8.1.3
- colorama 0.4.6
- comm 0.1.3
- debugpy 1.6.7
- decorator 5.1.1
- defusedxml 0.7.1
- distlib 0.3.6
- entrypoints 0.4
- exceptiongroup 1.1.1
- executing 1.2.0
- fastjsonschema 2.16.3
- fbpca 1.0
- filelock 3.12.0
- identify 2.5.24
- importlib-metadata 6.4.1
- importlib-resources 5.12.0
- iniconfig 2.0.0
- ipykernel 6.22.0
- ipython 8.12.0
- jedi 0.18.2
- jinja2 3.1.2
- joblib 1.2.0
- jsonschema 4.17.3
- jupyter-client 8.2.0
- jupyter-core 5.3.0
- jupyterlab-pygments 0.2.2
- markupsafe 2.1.2
- matplotlib-inline 0.1.6
- mistune 2.0.5
- mypy-extensions 1.0.0
- nbclient 0.7.3
- nbconvert 7.3.1
- nbformat 5.8.0
- nest-asyncio 1.5.6
- nodeenv 1.8.0
- numpy 1.24.2
- packaging 23.1
- pandas 2.0.0
- pandocfilters 1.5.0
- parso 0.8.3
- pathspec 0.11.1
- pexpect 4.8.0
- pickleshare 0.7.5
- pkgutil-resolve-name 1.3.10
- platformdirs 3.2.0
- pluggy 1.0.0
- pre-commit 3.3.2
- prompt-toolkit 3.0.38
- psutil 5.9.5
- ptyprocess 0.7.0
- pure-eval 0.2.2
- pycparser 2.21
- pygments 2.15.0
- pyrsistent 0.19.3
- pytest 7.3.1
- python-dateutil 2.8.2
- pytz 2023.3
- pytz-deprecation-shim 0.1.0.post0
- pywin32 306
- pyyaml 6.0
- pyzmq 25.0.2
- rpy2 3.5.11
- ruff 0.0.270
- scikit-learn 1.2.2
- scipy 1.9.3
- setuptools 67.8.0
- six 1.16.0
- soupsieve 2.4.1
- stack-data 0.6.2
- threadpoolctl 3.1.0
- tinycss2 1.2.1
- tomli 2.0.1
- toolz 0.12.0
- tornado 6.3.3
- traitlets 5.9.0
- typing-extensions 4.5.0
- tzdata 2023.3
- tzlocal 4.3
- virtualenv 20.23.0
- wcwidth 0.2.6
- webencodings 0.5.1
- zipp 3.15.0
- altair ^4.2.2 || ^5.0.0
- pandas ^1.4.1 || ^2.0.0
- python ^3.8
- scikit-learn ^1.0.2