gradients

Build your deep learning algorithms with confidence

https://github.com/saran-nns/gradients

Science Score: 54.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
    Found CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
    Found .zenodo.json file
  • DOI references
  • Academic publication links
    Links to: zenodo.org
  • Committers with academic emails
  • Institutional organization owner
  • JOSS paper metadata
  • Scientific vocabulary similarity
    Low similarity (15.6%) to scientific vocabulary

Keywords

finite-difference-method gradient-check jax pytorch tensorflow2
Last synced: 6 months ago · JSON representation ·

Repository

Build your deep learning algorithms with confidence

Basic Info
  • Host: GitHub
  • Owner: Saran-nns
  • License: mit
  • Language: Python
  • Default Branch: main
  • Homepage:
  • Size: 160 KB
Statistics
  • Stars: 0
  • Watchers: 1
  • Forks: 0
  • Open Issues: 4
  • Releases: 1
Topics
finite-difference-method gradient-check jax pytorch tensorflow2
Created over 4 years ago · Last pushed over 1 year ago
Metadata Files
Readme License Citation

README.md

Build your deep learning models with confidence

Build Status codecov PyPI version Code style: black Downloads License DOI

Gradients provide a self consistency test function to perform gradient checking on your deep learning models. It uses centered finite difference approximation method to check the difference between analytical and numerical gradients and report if the check fails on any parameters of your model. Currently the library supports only PyTorch models built with custom layers, custom loss functions, activation functions and any neural network function subclassing AutoGrad.

Installation

pip install gradients

Package Overview

Optimizing deep learning models is a two step process:

  1. Compute gradients with respect to parameters

  2. Update the parameters given the gradients

In PyTorch, step 1 is done by the type-based automatic differentiation system torch.nn.autograd and 2 by the package implementing optimization algorithms torch.optim. Using them, we can develop fully customized deep learning models with torch.nn.Module and test them using Gradient as follows;

Activation function with backward

```python class MySigmoid(torch.autograd.Function):

@staticmethod
def forward(ctx, input):
    output = 1/(1+torch.exp(-input))
    ctx.save_for_backward(output)
    return output

@staticmethod
def backward(ctx, grad_output):
    input, = ctx.saved_tensors
    return grad_output*input*(1-input)

```

Loss function with backward

```python class MSELoss(torch.autograd.Function):

@staticmethod
def forward(ctx, y_pred, y):
    ctx.save_for_backward(y_pred, y)
    return ((y_pred-y)**2).sum()/y_pred.shape[0]

@staticmethod
def backward(ctx, grad_output):
    y_pred, y = ctx.saved_tensors
    grad_input = 2 * (y_pred-y)/y_pred.shape[0]
    return grad_input, None

```

Pytorch Model

python class MyModel(torch.nn.Module): def __init__(self,D_in, D_out): super(MyModel,self).__init__() self.w1 = torch.nn.Parameter(torch.randn(D_in, D_out), requires_grad=True) self.sigmoid = MySigmoid.apply def forward(self,x): y_pred = self.sigmoid(x.mm(self.w1)) return y_pred

Check your implementation using Gradient

```python import torch from gradients import Gradient

N, Din, Dout = 10, 4, 3

Create random Tensors to hold inputs and outputs

x = torch.randn(N, Din) y = torch.randn(N, Dout)

Construct model by instantiating the class defined above

mymodel = MyModel(Din, Dout) criterion = MSELoss.apply

Test custom build model

Gradient(mymodel,x,y,criterion,eps=1e-8)

```

Owner

  • Name: Saranraj Nambusubramaniyan
  • Login: Saran-nns
  • Kind: user
  • Location: Chemnitz

Comp. Neuroscience, Deep RL, State-space & Generative models. Professional account @sarannns

Citation (CITATION.cff)

cff-version: 1.2.0
message: "If you use this software, please cite it as below."
authors:
- family-names: "Nambusubramaniyan"
  given-names: "Saranraj"
  orcid: "https://orcid.org/0000-0002-7314-0261"
title: "gradients"
version: 1.0.0
doi: 10.5281/zenodo.5176243
date-released: 2021-08-10
url: "https://github.com/Saran-nns/gradients"

GitHub Events

Total
Last Year

Committers

Last synced: 7 months ago

All Time
  • Total Commits: 58
  • Total Committers: 1
  • Avg Commits per committer: 58.0
  • Development Distribution Score (DDS): 0.0
Past Year
  • Commits: 9
  • Committers: 1
  • Avg Commits per committer: 9.0
  • Development Distribution Score (DDS): 0.0
Top Committers
Name Email Commits
saran_nns s****s@h****m 58

Issues and Pull Requests

Last synced: 7 months ago

All Time
  • Total issues: 4
  • Total pull requests: 1
  • Average time to close issues: N/A
  • Average time to close pull requests: about 2 hours
  • Total issue authors: 1
  • Total pull request authors: 1
  • Average comments per issue: 0.0
  • Average comments per pull request: 0.0
  • Merged pull requests: 0
  • Bot issues: 0
  • Bot pull requests: 0
Past Year
  • Issues: 0
  • Pull requests: 1
  • Average time to close issues: N/A
  • Average time to close pull requests: about 2 hours
  • Issue authors: 0
  • Pull request authors: 1
  • Average comments per issue: 0
  • Average comments per pull request: 0.0
  • Merged pull requests: 0
  • Bot issues: 0
  • Bot pull requests: 0
Top Authors
Issue Authors
  • Saran-nns (4)
Pull Request Authors
  • Saran-nns (2)
Top Labels
Issue Labels
Pull Request Labels

Packages

  • Total packages: 1
  • Total downloads:
    • pypi 48 last-month
  • Total dependent packages: 0
  • Total dependent repositories: 1
  • Total versions: 3
  • Total maintainers: 1
pypi.org: gradients

Gradient Checker for Custom built PyTorch Models

  • Versions: 3
  • Dependent Packages: 0
  • Dependent Repositories: 1
  • Downloads: 48 Last month
Rankings
Dependent packages count: 10.1%
Dependent repos count: 21.6%
Average: 25.3%
Downloads: 26.3%
Forks count: 29.8%
Stargazers count: 38.8%
Maintainers (1)
Last synced: 7 months ago

Dependencies

requirements.txt pypi
  • certifi ==2018.11.29
  • cycler ==0.10.0
  • kiwisolver ==1.0.1
  • matplotlib ==3.0.3
  • numpy ==1.16.2
  • python-dateutil ==2.8.0
  • pytz ==2018.9
  • scipy ==1.2.1
  • six ==1.12.0
  • torch ==1.8.0
  • wincertstore ==0.2
setup.py pypi
  • numpy *
.github/workflows/build.yml actions
  • actions/checkout v2 composite
  • actions/setup-python v2 composite
  • codecov/codecov-action v1 composite