Flux

Flux: Elegant machine learning with Julia - Published in JOSS (2018)

https://github.com/fluxml/flux.jl

Science Score: 100.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
    Found CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
    Found .zenodo.json file
  • DOI references
    Found 4 DOI reference(s) in README and JOSS metadata
  • Academic publication links
    Links to: joss.theoj.org
  • Committers with academic emails
    14 of 257 committers (5.4%) from academic institutions
  • Institutional organization owner
  • JOSS paper metadata
    Published in Journal of Open Source Software

Keywords

data-science deep-learning flux machine-learning neural-networks the-human-brain

Keywords from Contributors

graphics optimisation optim unconstrained-optimisation unconstrained-optimization ensemble-learning pipelines predictive-modeling stacking tuning-parameters
Last synced: 4 months ago · JSON representation ·

Repository

Relax! Flux is the ML library that doesn't make you tensor

Basic Info
  • Host: GitHub
  • Owner: FluxML
  • License: other
  • Language: Julia
  • Default Branch: master
  • Homepage: https://fluxml.ai/
  • Size: 13.2 MB
Statistics
  • Stars: 4,662
  • Watchers: 91
  • Forks: 614
  • Open Issues: 277
  • Releases: 113
Topics
data-science deep-learning flux machine-learning neural-networks the-human-brain
Created over 9 years ago · Last pushed 5 months ago
Metadata Files
Readme Changelog Contributing Funding License Citation

README.md

[![](https://img.shields.io/badge/Documentation-stable-blue.svg)](https://fluxml.github.io/Flux.jl/stable/) [![](https://img.shields.io/badge/Documentation-dev-blue.svg)](https://fluxml.github.io/Flux.jl/dev/) [![DOI](https://joss.theoj.org/papers/10.21105/joss.00602/status.svg)](https://doi.org/10.21105/joss.00602) [![Flux Downloads](https://img.shields.io/badge/dynamic/json?url=http%3A%2F%2Fjuliapkgstats.com%2Fapi%2Fv1%2Fmonthly_downloads%2FFlux&query=total_requests&suffix=%2Fmonth&label=Downloads)](http://juliapkgstats.com/pkg/Flux)
[![][action-img]][action-url] [![][codecov-img]][codecov-url] [![ColPrac: Contributor's Guide on Collaborative Practices for Community Packages](https://img.shields.io/badge/ColPrac-Contributor's%20Guide-blueviolet)](https://github.com/SciML/ColPrac)

Flux is an elegant approach to machine learning. It's a 100% pure-Julia stack, and provides lightweight abstractions on top of Julia's native GPU and AD support. Flux makes the easy things easy while remaining fully hackable.

Works best with Julia 1.10 or later. Here's a very short example to try it out: ```julia using Flux data = [(x, 2x-x^3) for x in -2:0.1f0:2]

model = let w, b, v = (randn(Float32, 23) for _ in 1:3) # parameters x -> sum(v .* tanh.(w*x .+ b)) # callable end

model = Chain(vcat, Dense(1 => 23, tanh), Dense(23 => 1, bias=false), only)

optstate = Flux.setup(Adam(), model) for epoch in 1:100 Flux.train!((m,x,y) -> (m(x) - y)^2, model, data, optstate) end

using Plots plot(x -> 2x-x^3, -2, 2, label="truth") scatter!(model, -2:0.1f0:2, label="learned") `` In Flux 0.15, almost any parameterised function in Julia is a valid Flux model -- such as this closure overw, b, v`. The same function can also be implemented with built-in layers as shown.

The quickstart page has a longer example. See the documentation for details, or the model zoo for examples. Ask questions on the Julia discourse or slack.

If you use Flux in your research, please cite our work.

Owner

  • Name: FluxML
  • Login: FluxML
  • Kind: organization

The Elegant Machine Learning Stack

JOSS Publication

Flux: Elegant machine learning with Julia
Published
May 03, 2018
Volume 3, Issue 25, Page 602
Authors
Mike Innes ORCID
Julia Computing
Editor
Kevin M. Moerman ORCID
Tags
deep learning machine learning natural language processing computer vision reinforcement learning robotics automatic differentiation compiler

Citation (CITATION.bib)

@article{Flux.jl-2018,
  author    = {Michael Innes and
               Elliot Saba and
               Keno Fischer and
               Dhairya Gandhi and
               Marco Concetto Rudilosso and
               Neethu Mariya Joy and
               Tejan Karmali and
               Avik Pal and
               Viral Shah},
  title     = {Fashionable Modelling with Flux},
  journal   = {CoRR},
  volume    = {abs/1811.01457},
  year      = {2018},
  url       = {https://arxiv.org/abs/1811.01457},
  archivePrefix = {arXiv},
  eprint    = {1811.01457},
  timestamp = {Thu, 22 Nov 2018 17:58:30 +0100},
  biburl    = {https://dblp.org/rec/bib/journals/corr/abs-1811-01457},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}

@article{innes:2018,
  author    = {Mike Innes},
  title     = {Flux: Elegant Machine Learning with Julia},
  journal   = {Journal of Open Source Software},
  year      = {2018},
  doi       = {10.21105/joss.00602},
}

GitHub Events

Total
  • Create event: 56
  • Commit comment event: 23
  • Release event: 9
  • Issues event: 100
  • Watch event: 227
  • Delete event: 15
  • Issue comment event: 322
  • Push event: 396
  • Pull request review comment event: 69
  • Pull request review event: 103
  • Pull request event: 161
  • Fork event: 27
Last Year
  • Create event: 56
  • Commit comment event: 23
  • Release event: 9
  • Issues event: 100
  • Watch event: 227
  • Delete event: 15
  • Issue comment event: 322
  • Push event: 396
  • Pull request review comment event: 69
  • Pull request review event: 103
  • Pull request event: 161
  • Fork event: 27

Committers

Last synced: 5 months ago

All Time
  • Total Commits: 4,173
  • Total Committers: 257
  • Avg Commits per committer: 16.237
  • Development Distribution Score (DDS): 0.701
Past Year
  • Commits: 101
  • Committers: 23
  • Avg Commits per committer: 4.391
  • Development Distribution Score (DDS): 0.495
Top Committers
Name Email Commits
Mike Innes m****s@g****m 1,249
Dhairya Gandhi d****a@j****m 426
Carlo Lucibello c****o@g****m 337
Michael Abbott 3****t 183
Kyle Daruwalla d****a@w****u 178
Saransh s****1@g****m 125
Avik Pal a****l@i****n 75
thebhatman m****0@g****m 75
Michael Abbott me@e****k 53
Logan Kilpatrick 2****3@g****m 48
Brian Chen T****r 44
Abhirath Anand 7****h 40
SomTambe t****m@g****m 36
jeremie.db j****b@e****m 35
Anton Smirnov t****7@g****m 35
Matt Kelley m****y@g****m 35
Matěj Račinský m****y@a****m 34
DrChainsaw c****y@g****m 34
Tim Besard t****d@g****m 32
Johnny Chen j****4@h****m 32
Bruno Hebling Vieira b****a@u****r 31
Matthew Schlegel m****g@g****m 31
Tejan Karmali t****0@g****m 30
cossio j****z@g****m 28
Ali Hamdi a****2@o****m 26
dependabot[bot] 4****] 26
Lyndon White l****e@i****k 25
janEbert j****t@p****t 24
Elliot Saba s****t@g****m 24
Billy Moses w****s@g****m 21
and 227 more...

Issues and Pull Requests

Last synced: 4 months ago

All Time
  • Total issues: 197
  • Total pull requests: 409
  • Average time to close issues: 11 months
  • Average time to close pull requests: 2 months
  • Total issue authors: 118
  • Total pull request authors: 80
  • Average comments per issue: 5.02
  • Average comments per pull request: 2.92
  • Merged pull requests: 287
  • Bot issues: 0
  • Bot pull requests: 84
Past Year
  • Issues: 49
  • Pull requests: 112
  • Average time to close issues: 9 days
  • Average time to close pull requests: 6 days
  • Issue authors: 24
  • Pull request authors: 26
  • Average comments per issue: 2.14
  • Average comments per pull request: 2.0
  • Merged pull requests: 78
  • Bot issues: 0
  • Bot pull requests: 17
Top Authors
Issue Authors
  • CarloLucibello (40)
  • alerem18 (5)
  • mcabbott (5)
  • ToucheSir (5)
  • lassepe (4)
  • BioTurboNick (4)
  • darsnack (4)
  • FelixBenning (3)
  • chengchingwen (3)
  • cirobr (3)
  • NeroBlackstone (3)
  • piever (3)
  • IanButterworth (2)
  • jacob-m-wilson-42 (2)
  • mkschleg (2)
Pull Request Authors
  • CarloLucibello (109)
  • mcabbott (64)
  • dependabot[bot] (47)
  • github-actions[bot] (43)
  • pxl-th (19)
  • wsmoses (15)
  • MartinuzziFrancesco (9)
  • ToucheSir (8)
  • DhairyaLGandhi (7)
  • christiangnrd (7)
  • paulnovo (6)
  • 4SAnalyticsnModelling (6)
  • codetalker7 (5)
  • BioTurboNick (5)
  • diegozea (4)
Top Labels
Issue Labels
good first issue (14) RNN (14) bug (13) enhancement (12) documentation (12) help wanted (11) cuda (9) optimisers-dot-jl (7) discussion (5) gradients (4) testing (2) float16 (2) performance (2) enzyme (2) dependencies (1) deprecation (1)
Pull Request Labels
dependencies (47) documentation (24) RNN (20) breaking (16) run downstream test (13) enhancement (10) gradients (10) cuda (6) enzyme (6) discussion (4) regression (4) performance (2) optimisers-dot-jl (2) good first issue (1) testing (1) github_actions (1)

Packages

  • Total packages: 3
  • Total downloads:
    • julia 2,271 total
  • Total dependent packages: 174
    (may contain duplicates)
  • Total dependent repositories: 14
    (may contain duplicates)
  • Total versions: 328
juliahub.com: Flux

Relax! Flux is the ML library that doesn't make you tensor

  • Versions: 102
  • Dependent Packages: 174
  • Dependent Repositories: 14
  • Downloads: 2,271 Total
Rankings
Forks count: 0.0%
Stargazers count: 0.0%
Dependent packages count: 0.5%
Average: 0.7%
Dependent repos count: 2.4%
Last synced: 4 months ago
proxy.golang.org: github.com/FluxML/Flux.jl
  • Versions: 113
  • Dependent Packages: 0
  • Dependent Repositories: 0
Rankings
Dependent packages count: 5.4%
Average: 5.6%
Dependent repos count: 5.8%
Last synced: 4 months ago
proxy.golang.org: github.com/fluxml/flux.jl
  • Versions: 113
  • Dependent Packages: 0
  • Dependent Repositories: 0
Rankings
Dependent packages count: 5.4%
Average: 5.6%
Dependent repos count: 5.8%
Last synced: 4 months ago