MLxtend

MLxtend: Providing machine learning and data science utilities and extensions to Python's scientific computing stack - Published in JOSS (2018)

https://github.com/rasbt/mlxtend

Science Score: 95.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
    Found .zenodo.json file
  • DOI references
    Found 6 DOI reference(s) in README and JOSS metadata
  • Academic publication links
    Links to: joss.theoj.org
  • Committers with academic emails
    9 of 112 committers (8.0%) from academic institutions
  • Institutional organization owner
  • JOSS paper metadata
    Published in Journal of Open Source Software

Keywords

association-rules data-mining data-science machine-learning python supervised-learning unsupervised-learning

Keywords from Contributors

neuroscience

Scientific Fields

Mathematics Computer Science - 84% confidence
Last synced: 4 months ago · JSON representation

Repository

A library of extension and helper modules for Python's data analysis and machine learning libraries.

Basic Info
Statistics
  • Stars: 5,061
  • Watchers: 116
  • Forks: 884
  • Open Issues: 151
  • Releases: 32
Topics
association-rules data-mining data-science machine-learning python supervised-learning unsupervised-learning
Created over 11 years ago · Last pushed 6 months ago
Metadata Files
Readme License Code of conduct

README.md

DOI PyPI version Anaconda-Server Badge Build status codecov Python 3 License Discuss

mlxtend logo

Mlxtend (machine learning extensions) is a Python library of useful tools for the day-to-day data science tasks.


Sebastian Raschka 2014-2024


Links



Installing mlxtend

PyPI

To install mlxtend, just execute

bash pip install mlxtend

Alternatively, you could download the package manually from the Python Package Index https://pypi.python.org/pypi/mlxtend, unzip it, navigate into the package, and use the command:

bash python setup.py install

Conda

If you use conda, to install mlxtend just execute

bash conda install -c conda-forge mlxtend

Dev Version

The mlxtend version on PyPI may always be one step behind; you can install the latest development version from the GitHub repository by executing

bash pip install git+git://github.com/rasbt/mlxtend.git#egg=mlxtend

Or, you can fork the GitHub repository from https://github.com/rasbt/mlxtend and install mlxtend from your local drive via

bash python setup.py install



Examples

```python import numpy as np import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec import itertools from sklearn.linearmodel import LogisticRegression from sklearn.svm import SVC from sklearn.ensemble import RandomForestClassifier from mlxtend.classifier import EnsembleVoteClassifier from mlxtend.data import irisdata from mlxtend.plotting import plotdecisionregions

Initializing Classifiers

clf1 = LogisticRegression(randomstate=0) clf2 = RandomForestClassifier(randomstate=0) clf3 = SVC(random_state=0, probability=True) eclf = EnsembleVoteClassifier(clfs=[clf1, clf2, clf3], weights=[2, 1, 1], voting='soft')

Loading some example data

X, y = iris_data() X = X[:,[0, 2]]

Plotting Decision Regions

gs = gridspec.GridSpec(2, 2) fig = plt.figure(figsize=(10, 8))

for clf, lab, grd in zip([clf1, clf2, clf3, eclf], ['Logistic Regression', 'Random Forest', 'RBF kernel SVM', 'Ensemble'], itertools.product([0, 1], repeat=2)): clf.fit(X, y) ax = plt.subplot(gs[grd[0], grd[1]]) fig = plotdecisionregions(X=X, y=y, clf=clf, legend=2) plt.title(lab) plt.show() ```


If you use mlxtend as part of your workflow in a scientific publication, please consider citing the mlxtend repository with the following DOI:

@article{raschkas_2018_mlxtend, author = {Sebastian Raschka}, title = {MLxtend: Providing machine learning and data science utilities and extensions to Python’s scientific computing stack}, journal = {The Journal of Open Source Software}, volume = {3}, number = {24}, month = apr, year = 2018, publisher = {The Open Journal}, doi = {10.21105/joss.00638}, url = {https://joss.theoj.org/papers/10.21105/joss.00638} }

  • Raschka, Sebastian (2018) MLxtend: Providing machine learning and data science utilities and extensions to Python's scientific computing stack. J Open Source Softw 3(24).

License

  • This project is released under a permissive new BSD open source license (LICENSE-BSD3.txt) and commercially usable. There is no warranty; not even for merchantability or fitness for a particular purpose.
  • In addition, you may use, copy, modify and redistribute all artistic creative works (figures and images) included in this distribution under the directory according to the terms and conditions of the Creative Commons Attribution 4.0 International License. See the file LICENSE-CC-BY.txt for details. (Computer-generated graphics such as the plots produced by matplotlib fall under the BSD license mentioned above).

Contact

The best way to ask questions is via the GitHub Discussions channel. In case you encounter usage bugs, please don't hesitate to use the GitHub's issue tracker directly.

Owner

  • Name: Sebastian Raschka
  • Login: rasbt
  • Kind: user
  • Location: Madison, WI
  • Company: @Lightning-AI , University of Wisconsin-Madison

Machine Learning and AI researcher & currently research engineer at a startup

JOSS Publication

MLxtend: Providing machine learning and data science utilities and extensions to Python's scientific computing stack
Published
April 22, 2018
Volume 3, Issue 24, Page 638
Authors
Sebastian Raschka ORCID
Michigan State University
Editor
Ariel Rokem ORCID
Tags
machine learning data science association rule mining ensemble learning feature selection

GitHub Events

Total
  • Create event: 5
  • Release event: 3
  • Issues event: 11
  • Watch event: 180
  • Delete event: 3
  • Issue comment event: 62
  • Push event: 20
  • Pull request event: 28
  • Pull request review event: 25
  • Pull request review comment event: 13
  • Fork event: 35
Last Year
  • Create event: 5
  • Release event: 3
  • Issues event: 11
  • Watch event: 180
  • Delete event: 3
  • Issue comment event: 62
  • Push event: 20
  • Pull request event: 28
  • Pull request review event: 25
  • Pull request review comment event: 13
  • Fork event: 35

Committers

Last synced: 5 months ago

All Time
  • Total Commits: 1,360
  • Total Committers: 112
  • Avg Commits per committer: 12.143
  • Development Distribution Score (DDS): 0.317
Past Year
  • Commits: 15
  • Committers: 6
  • Avg Commits per committer: 2.5
  • Development Distribution Score (DDS): 0.6
Top Committers
Name Email Commits
rasbt m****l@s****m 929
SolidAhmad n****r@g****m 110
Dmitry Labazkin l****y@g****m 25
James Bourbeau j****u@g****m 18
Sebastian Raschka r****s@m****u 16
reiinakano r****o@y****m 13
Maitreyee Mhasakar m****r@g****m 12
Takashi Oya t****a@T****l 10
Kota Mori k****5@g****m 10
JJLWHarrison j****9@g****m 9
Will McGinnis w****l@p****m 8
Zach Griffith z****h@i****u 8
fatihsen20 f****0@g****m 8
jaksmid j****d@b****i 8
zuari1993 l****n@w****u 7
Ne-oL 3****L 7
Daniel Kleine 5****e 6
ftnext t****p@g****m 6
Daniel d****9@g****m 5
F.J.H. Heras f****s@g****m 5
Guillaume Poirier-Morency g****y@g****m 5
Qiang Gu 3****u 5
Colin Carroll c****l@g****m 4
Floris Hoogenboom f****s@d****l 4
Steve Harenberg h****d@g****m 4
naman.mistry 6****y 4
Vahid Mirjalili 2****y 4
geo a****e@g****m 3
Marco Tiraboschi m****i@h****t 3
Denis Barbier b****r@i****r 3
and 82 more...

Issues and Pull Requests

Last synced: 4 months ago

All Time
  • Total issues: 91
  • Total pull requests: 98
  • Average time to close issues: 5 months
  • Average time to close pull requests: 2 months
  • Total issue authors: 67
  • Total pull request authors: 34
  • Average comments per issue: 3.36
  • Average comments per pull request: 3.72
  • Merged pull requests: 81
  • Bot issues: 0
  • Bot pull requests: 0
Past Year
  • Issues: 7
  • Pull requests: 19
  • Average time to close issues: 12 days
  • Average time to close pull requests: 13 days
  • Issue authors: 7
  • Pull request authors: 8
  • Average comments per issue: 1.29
  • Average comments per pull request: 2.05
  • Merged pull requests: 16
  • Bot issues: 0
  • Bot pull requests: 0
Top Authors
Issue Authors
  • rasbt (17)
  • NimaSarajpoor (4)
  • ftnext (3)
  • carlsmedstad (2)
  • it176131 (2)
  • arilwan (2)
  • andysingal (1)
  • prateek-bricklane (1)
  • huanfachen (1)
  • labdmitriy (1)
  • zuari1993 (1)
  • ltbd78 (1)
  • josejub (1)
  • rich-ard (1)
  • nucsit026 (1)
Pull Request Authors
  • rasbt (43)
  • d-kleine (12)
  • fkdosilovic (4)
  • NimaSarajpoor (4)
  • it176131 (4)
  • namanmistry (4)
  • zuari1993 (4)
  • HassaneSkikri (4)
  • zazass8 (4)
  • ftnext (3)
  • muhammadanas0716 (2)
  • soumyadsanyal (2)
  • danickblouin (2)
  • MarceloNunesAlves (2)
  • Bot-wxt1221 (2)
Top Labels
Issue Labels
Bug (27) New Feature (19) Question (12) Documentation (11) Enhancement (9) help wanted (5) easy (4)
Pull Request Labels
Enhancement (2) in progress (2)

Packages

  • Total packages: 4
  • Total downloads:
    • pypi 746,190 last-month
  • Total docker downloads: 109,005
  • Total dependent packages: 58
    (may contain duplicates)
  • Total dependent repositories: 1,311
    (may contain duplicates)
  • Total versions: 101
  • Total maintainers: 1
pypi.org: mlxtend

Machine Learning Library Extensions

  • Versions: 53
  • Dependent Packages: 56
  • Dependent Repositories: 1,293
  • Downloads: 746,190 Last month
  • Docker Downloads: 109,005
Rankings
Dependent repos count: 0.3%
Dependent packages count: 0.4%
Downloads: 0.4%
Average: 0.8%
Stargazers count: 1.0%
Docker downloads count: 1.1%
Forks count: 1.5%
Maintainers (1)
Last synced: 4 months ago
proxy.golang.org: github.com/rasbt/mlxtend
  • Versions: 28
  • Dependent Packages: 0
  • Dependent Repositories: 0
Rankings
Dependent packages count: 9.0%
Average: 9.6%
Dependent repos count: 10.2%
Last synced: 4 months ago
conda-forge.org: mlxtend

A library of Python tools and extensions for data science and machine learning. Contact ============= If you have any questions or comments about mlxtend, please feel free to contact me via eMail: mail@sebastianraschka.com or Twitter: https://twitter.com/rasbt This project is hosted at https://github.com/rasbt/mlxtend The documentation can be found at http://rasbt.github.io/mlxtend/

  • Versions: 17
  • Dependent Packages: 2
  • Dependent Repositories: 9
Rankings
Stargazers count: 5.4%
Forks count: 5.8%
Average: 10.6%
Dependent repos count: 11.6%
Dependent packages count: 19.6%
Last synced: 4 months ago
anaconda.org: mlxtend

A library of Python tools and extensions for data science and machine learning.

  • Versions: 3
  • Dependent Packages: 0
  • Dependent Repositories: 9
Rankings
Stargazers count: 12.0%
Forks count: 12.3%
Average: 28.6%
Dependent repos count: 38.9%
Dependent packages count: 51.2%
Last synced: 4 months ago

Dependencies

requirements-test.txt pypi
  • dlib * test
  • imageio * test
  • isort * test
  • joblib * test
  • scikit-image * test
requirements.txt pypi
  • joblib >=0.13.2
  • matplotlib >=3.0.0
  • numpy >=1.16.2
  • pandas >=0.24.2
  • scikit-learn >=1.0.2
  • scipy >=1.2.1
.github/workflows/linter.yml actions
  • actions/checkout v2 composite
  • actions/setup-python v2 composite
.github/workflows/python-package-conda.yml actions
  • actions/checkout v2 composite
  • actions/setup-python v2 composite
  • codecov/codecov-action v2 composite
requirements.lock pypi
  • cycler ==0.11.0
  • fonttools ==4.34.4
  • joblib ==1.1.0
  • kiwisolver ==1.4.4
  • matplotlib ==3.5.2
  • numpy ==1.23.1
  • packaging ==21.3
  • pandas ==1.4.3
  • pillow ==9.2.0
  • pyparsing ==3.0.9
  • python-dateutil ==2.8.2
  • pytz ==2022.1
  • scikit-learn ==1.1.1
  • scipy ==1.8.1
  • six ==1.16.0
  • threadpoolctl ==3.1.0
environment.yml pypi
  • markdown >=3.3.6
setup.py pypi