MLxtend
MLxtend: Providing machine learning and data science utilities and extensions to Python's scientific computing stack - Published in JOSS (2018)
Science Score: 95.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
○CITATION.cff file
-
✓codemeta.json file
Found codemeta.json file -
✓.zenodo.json file
Found .zenodo.json file -
✓DOI references
Found 6 DOI reference(s) in README and JOSS metadata -
✓Academic publication links
Links to: joss.theoj.org -
✓Committers with academic emails
9 of 112 committers (8.0%) from academic institutions -
○Institutional organization owner
-
✓JOSS paper metadata
Published in Journal of Open Source Software
Keywords
Keywords from Contributors
Scientific Fields
Repository
A library of extension and helper modules for Python's data analysis and machine learning libraries.
Basic Info
- Host: GitHub
- Owner: rasbt
- License: other
- Language: Python
- Default Branch: master
- Homepage: https://rasbt.github.io/mlxtend/
- Size: 94.3 MB
Statistics
- Stars: 5,061
- Watchers: 116
- Forks: 884
- Open Issues: 151
- Releases: 32
Topics
Metadata Files
README.md

Mlxtend (machine learning extensions) is a Python library of useful tools for the day-to-day data science tasks.
Sebastian Raschka 2014-2024
Links
- Documentation: https://rasbt.github.io/mlxtend
- PyPI: https://pypi.python.org/pypi/mlxtend
- Changelog: https://rasbt.github.io/mlxtend/CHANGELOG
- Contributing: https://rasbt.github.io/mlxtend/CONTRIBUTING
- Questions? Check out the GitHub Discussions board
Installing mlxtend
PyPI
To install mlxtend, just execute
bash
pip install mlxtend
Alternatively, you could download the package manually from the Python Package Index https://pypi.python.org/pypi/mlxtend, unzip it, navigate into the package, and use the command:
bash
python setup.py install
Conda
If you use conda, to install mlxtend just execute
bash
conda install -c conda-forge mlxtend
Dev Version
The mlxtend version on PyPI may always be one step behind; you can install the latest development version from the GitHub repository by executing
bash
pip install git+git://github.com/rasbt/mlxtend.git#egg=mlxtend
Or, you can fork the GitHub repository from https://github.com/rasbt/mlxtend and install mlxtend from your local drive via
bash
python setup.py install
Examples
```python import numpy as np import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec import itertools from sklearn.linearmodel import LogisticRegression from sklearn.svm import SVC from sklearn.ensemble import RandomForestClassifier from mlxtend.classifier import EnsembleVoteClassifier from mlxtend.data import irisdata from mlxtend.plotting import plotdecisionregions
Initializing Classifiers
clf1 = LogisticRegression(randomstate=0) clf2 = RandomForestClassifier(randomstate=0) clf3 = SVC(random_state=0, probability=True) eclf = EnsembleVoteClassifier(clfs=[clf1, clf2, clf3], weights=[2, 1, 1], voting='soft')
Loading some example data
X, y = iris_data() X = X[:,[0, 2]]
Plotting Decision Regions
gs = gridspec.GridSpec(2, 2) fig = plt.figure(figsize=(10, 8))
for clf, lab, grd in zip([clf1, clf2, clf3, eclf], ['Logistic Regression', 'Random Forest', 'RBF kernel SVM', 'Ensemble'], itertools.product([0, 1], repeat=2)): clf.fit(X, y) ax = plt.subplot(gs[grd[0], grd[1]]) fig = plotdecisionregions(X=X, y=y, clf=clf, legend=2) plt.title(lab) plt.show() ```

If you use mlxtend as part of your workflow in a scientific publication, please consider citing the mlxtend repository with the following DOI:
@article{raschkas_2018_mlxtend,
author = {Sebastian Raschka},
title = {MLxtend: Providing machine learning and data science
utilities and extensions to Python’s
scientific computing stack},
journal = {The Journal of Open Source Software},
volume = {3},
number = {24},
month = apr,
year = 2018,
publisher = {The Open Journal},
doi = {10.21105/joss.00638},
url = {https://joss.theoj.org/papers/10.21105/joss.00638}
}
- Raschka, Sebastian (2018) MLxtend: Providing machine learning and data science utilities and extensions to Python's scientific computing stack. J Open Source Softw 3(24).
License
- This project is released under a permissive new BSD open source license (LICENSE-BSD3.txt) and commercially usable. There is no warranty; not even for merchantability or fitness for a particular purpose.
- In addition, you may use, copy, modify and redistribute all artistic creative works (figures and images) included in this distribution under the directory according to the terms and conditions of the Creative Commons Attribution 4.0 International License. See the file LICENSE-CC-BY.txt for details. (Computer-generated graphics such as the plots produced by matplotlib fall under the BSD license mentioned above).
Contact
The best way to ask questions is via the GitHub Discussions channel. In case you encounter usage bugs, please don't hesitate to use the GitHub's issue tracker directly.
Owner
- Name: Sebastian Raschka
- Login: rasbt
- Kind: user
- Location: Madison, WI
- Company: @Lightning-AI , University of Wisconsin-Madison
- Website: https://magazine.sebastianraschka.com
- Twitter: rasbt
- Repositories: 136
- Profile: https://github.com/rasbt
Machine Learning and AI researcher & currently research engineer at a startup
JOSS Publication
MLxtend: Providing machine learning and data science utilities and extensions to Python's scientific computing stack
Tags
machine learning data science association rule mining ensemble learning feature selectionGitHub Events
Total
- Create event: 5
- Release event: 3
- Issues event: 11
- Watch event: 180
- Delete event: 3
- Issue comment event: 62
- Push event: 20
- Pull request event: 28
- Pull request review event: 25
- Pull request review comment event: 13
- Fork event: 35
Last Year
- Create event: 5
- Release event: 3
- Issues event: 11
- Watch event: 180
- Delete event: 3
- Issue comment event: 62
- Push event: 20
- Pull request event: 28
- Pull request review event: 25
- Pull request review comment event: 13
- Fork event: 35
Committers
Last synced: 5 months ago
Top Committers
| Name | Commits | |
|---|---|---|
| rasbt | m****l@s****m | 929 |
| SolidAhmad | n****r@g****m | 110 |
| Dmitry Labazkin | l****y@g****m | 25 |
| James Bourbeau | j****u@g****m | 18 |
| Sebastian Raschka | r****s@m****u | 16 |
| reiinakano | r****o@y****m | 13 |
| Maitreyee Mhasakar | m****r@g****m | 12 |
| Takashi Oya | t****a@T****l | 10 |
| Kota Mori | k****5@g****m | 10 |
| JJLWHarrison | j****9@g****m | 9 |
| Will McGinnis | w****l@p****m | 8 |
| Zach Griffith | z****h@i****u | 8 |
| fatihsen20 | f****0@g****m | 8 |
| jaksmid | j****d@b****i | 8 |
| zuari1993 | l****n@w****u | 7 |
| Ne-oL | 3****L | 7 |
| Daniel Kleine | 5****e | 6 |
| ftnext | t****p@g****m | 6 |
| Daniel | d****9@g****m | 5 |
| F.J.H. Heras | f****s@g****m | 5 |
| Guillaume Poirier-Morency | g****y@g****m | 5 |
| Qiang Gu | 3****u | 5 |
| Colin Carroll | c****l@g****m | 4 |
| Floris Hoogenboom | f****s@d****l | 4 |
| Steve Harenberg | h****d@g****m | 4 |
| naman.mistry | 6****y | 4 |
| Vahid Mirjalili | 2****y | 4 |
| geo | a****e@g****m | 3 |
| Marco Tiraboschi | m****i@h****t | 3 |
| Denis Barbier | b****r@i****r | 3 |
| and 82 more... | ||
Committer Domains (Top 20 + Academic)
Issues and Pull Requests
Last synced: 4 months ago
All Time
- Total issues: 91
- Total pull requests: 98
- Average time to close issues: 5 months
- Average time to close pull requests: 2 months
- Total issue authors: 67
- Total pull request authors: 34
- Average comments per issue: 3.36
- Average comments per pull request: 3.72
- Merged pull requests: 81
- Bot issues: 0
- Bot pull requests: 0
Past Year
- Issues: 7
- Pull requests: 19
- Average time to close issues: 12 days
- Average time to close pull requests: 13 days
- Issue authors: 7
- Pull request authors: 8
- Average comments per issue: 1.29
- Average comments per pull request: 2.05
- Merged pull requests: 16
- Bot issues: 0
- Bot pull requests: 0
Top Authors
Issue Authors
- rasbt (17)
- NimaSarajpoor (4)
- ftnext (3)
- carlsmedstad (2)
- it176131 (2)
- arilwan (2)
- andysingal (1)
- prateek-bricklane (1)
- huanfachen (1)
- labdmitriy (1)
- zuari1993 (1)
- ltbd78 (1)
- josejub (1)
- rich-ard (1)
- nucsit026 (1)
Pull Request Authors
- rasbt (43)
- d-kleine (12)
- fkdosilovic (4)
- NimaSarajpoor (4)
- it176131 (4)
- namanmistry (4)
- zuari1993 (4)
- HassaneSkikri (4)
- zazass8 (4)
- ftnext (3)
- muhammadanas0716 (2)
- soumyadsanyal (2)
- danickblouin (2)
- MarceloNunesAlves (2)
- Bot-wxt1221 (2)
Top Labels
Issue Labels
Pull Request Labels
Packages
- Total packages: 4
-
Total downloads:
- pypi 746,190 last-month
- Total docker downloads: 109,005
-
Total dependent packages: 58
(may contain duplicates) -
Total dependent repositories: 1,311
(may contain duplicates) - Total versions: 101
- Total maintainers: 1
pypi.org: mlxtend
Machine Learning Library Extensions
- Homepage: https://github.com/rasbt/mlxtend
- Documentation: https://rasbt.github.io/mlxtend
- License: BSD 3-Clause
-
Latest release: 0.23.4
published 11 months ago
Rankings
Maintainers (1)
proxy.golang.org: github.com/rasbt/mlxtend
- Documentation: https://pkg.go.dev/github.com/rasbt/mlxtend#section-documentation
- License: other
-
Latest release: v0.23.4
published 11 months ago
Rankings
conda-forge.org: mlxtend
A library of Python tools and extensions for data science and machine learning. Contact ============= If you have any questions or comments about mlxtend, please feel free to contact me via eMail: mail@sebastianraschka.com or Twitter: https://twitter.com/rasbt This project is hosted at https://github.com/rasbt/mlxtend The documentation can be found at http://rasbt.github.io/mlxtend/
- Homepage: https://github.com/rasbt/mlxtend
- License: BSD-3-Clause
-
Latest release: 0.21.0
published over 3 years ago
Rankings
anaconda.org: mlxtend
A library of Python tools and extensions for data science and machine learning.
- Homepage: https://github.com/rasbt/mlxtend
- License: BSD-3-Clause
-
Latest release: 0.23.4
published 11 months ago
Rankings
Dependencies
- dlib * test
- imageio * test
- isort * test
- joblib * test
- scikit-image * test
- joblib >=0.13.2
- matplotlib >=3.0.0
- numpy >=1.16.2
- pandas >=0.24.2
- scikit-learn >=1.0.2
- scipy >=1.2.1
- actions/checkout v2 composite
- actions/setup-python v2 composite
- actions/checkout v2 composite
- actions/setup-python v2 composite
- codecov/codecov-action v2 composite
- cycler ==0.11.0
- fonttools ==4.34.4
- joblib ==1.1.0
- kiwisolver ==1.4.4
- matplotlib ==3.5.2
- numpy ==1.23.1
- packaging ==21.3
- pandas ==1.4.3
- pillow ==9.2.0
- pyparsing ==3.0.9
- python-dateutil ==2.8.2
- pytz ==2022.1
- scikit-learn ==1.1.1
- scipy ==1.8.1
- six ==1.16.0
- threadpoolctl ==3.1.0
- markdown >=3.3.6
