neuroblastoma
Single-cell transcriptomics and epigenomics unravel the role of monocytes in neuroblastoma bone marrow metastasis
Science Score: 75.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
✓CITATION.cff file
Found CITATION.cff file -
✓codemeta.json file
Found codemeta.json file -
✓.zenodo.json file
Found .zenodo.json file -
✓DOI references
Found 9 DOI reference(s) in README -
✓Academic publication links
Links to: zenodo.org -
○Academic email domains
-
✓Institutional organization owner
Organization csbg has institutional domain (www.plus.ac.at) -
○JOSS paper metadata
-
○Scientific vocabulary similarity
Low similarity (9.0%) to scientific vocabulary
Keywords
Repository
Single-cell transcriptomics and epigenomics unravel the role of monocytes in neuroblastoma bone marrow metastasis
Basic Info
Statistics
- Stars: 9
- Watchers: 1
- Forks: 1
- Open Issues: 0
- Releases: 3
Topics
Metadata Files
README.md
Single-cell transcriptomics and epigenomics unravel the role of monocytes in neuroblastoma bone marrow metastasis
This code supplements the publication by Fetahu, Esser-Skala, Dnyansagar et al (2023).
Folders
(Not all of these folders appear in the git repository.)
data_generated: output files generated by the scripts in this repositorydata_raw: raw input datadoc: project documentationliterature: relevant publicationsmetadata: additional required datamisc: miscellaneous scriptsplots: generated plotsrenv: R environment datascatac: scripts for scATAC-seq analysistables: exported supplementary tables and data; the subfoldersource_datacontains source data for figures
Download data
Create a folder data_raw that will contain raw data in the following subfolders:
adrmed:adrenal_medulla_Seurat.RDS: reference expression data for adrenal medullary cells; download from https://adrenal.kitz-heidelberg.de/developmentalprogramsNB_viz/ (Download data -> Download Adrenal medulla data -> Seurat object (RDS))
rna_seq: DownloadGSE216155_RAW.tarfrom GEO Series GSE216155 and extract all files.atac_seq: Download all files from GEO Series GSE216175 (GSE216175_barcodes.tsv.gz,GSE216175_barcodes_samples.csv.gz,GSE216175_filtered_peak_bc_matrix.h5,GSE216175_matrix.mtx.gz,GSE216175_peaks.bed.gz, andGSE216175_RAW.tar). Extract all files from the tarball.GSE137804: download the following files from GEO series GSE137804:GSE137804_tumor_dataset_annotation.csv.gzGSE137804_RAW.tar, from which the following eleven files must be extracted:GSM4088774_T10_gene_cell_exprs_table.xls.gzGSM4088776_T27_gene_cell_exprs_table.xls.gzGSM4088777_T34_gene_cell_exprs_table.xls.gzGSM4088780_T69_gene_cell_exprs_table.xls.gzGSM4088781_T71_gene_cell_exprs_table.xls.gzGSM4088782_T75_gene_cell_exprs_table.xls.gzGSM4088783_T92_gene_cell_exprs_table.xls.gzGSM4654669_T162_gene_cell_exprs_table.xls.gzGSM4654672_T200_gene_cell_exprs_table.xls.gzGSM4654673_T214_gene_cell_exprs_table.xls.gzGSM4654674_T230_gene_cell_exprs_table.xls.gz
snp_array: Extract the contents ofsnp_array.tgzprovided in Zenodo repository https://doi.org/10.5281/zenodo.7707614
Optionally, obtain intermediary data: Extract the contents of R_data_generated.tgz from Zenodo repository https://doi.org/10.5281/zenodo.7707614 to folder data_generated.
scRNA-seq analysis
Main workflow
Run these R scripts in the given order to generate all files required by figures and tables.
- perform_qc.R – perform QC filtering, ensure unique cell names
- integrate_rna.R – integrate scRNA-seq samples with monocle, perform basic analyses and extract resulting metadata
- correct_ambiance.R – remove cell-free RNA contamination
- classifycelltypes.R – perform cell type classification via SingleR
- assemble_metadata.R – generate one CSV and RDS file with all metadata
- analyse_dge.R – analyse differential gene expression using mixed models
- analyse_cnv.R – analyse copy number variations
- analyse_ccc.R – analyse cell-cell communication
- analyse_myeloid.R – analyse myeloid subpopulation
- preparedatadong.R – prepare dataset by Dong et al for analysis
- classifyasadrenal.R – classify tumor cells as adrenal medullary cell types
- comparetumorspseudobulk.R – comparison of tumor samples via pseudobulk correlation
Plotting functions
Run these R scripts in arbitrary order to generate publication figures and tables:
- plotfigure1_S1.R – includes Tables S2, S4 and Data S1
- plotfigure2_S2.R
- plotfigure3_S3.R – includes Data S2
- plotfigure4S4S7b.R – includes Data S3 and S4
- plotfigureS5_S7c.R – includes Data S5 and S6
- plotfiguresrevision.R – plots for the reply to reviewers
Other scripts
- common_functions.R – functions used throughout the project
- plot_dependencies.R – plot the dependency graph
- styling.R – functions for generating publication-quality figures and tables
scATAC-seq analysis
All required scripts are in subfolder scatac.
scATAC-seq workflow
- R0_scopen.R – quality control, normalization, clustering
- R1_annotation.R – annotation of clusters formed and markers used
- R2footprintingcelltype.R – cell-type specific footprinting
- R3nebularun.R – identify differentially accessible OCRs in patient groups
- R4nebularesults.R – analyze nebula results
- R5nebulamicroenvironment.R – enrichment in microenvironment cells
- R6nebulanbcells.R – enrichment in NB cells
- R7createbedrunhomer.R – create cell specific bed files and motif analysis
- R8homerresults.R – analyze motif analysis results
scATAC-seq scRNA-seq integration workflow
For data integration we used scGLUE (Graph Linked Unified Embedding) model for unpaired single-cell multi-omics data integration (https://scglue.readthedocs.io/en/latest/). We followed the detailed tutorial at https://scglue.readthedocs.io/en/latest/tutorials.html. Before the tutorial we needed to convert the objects in anndata format from SingleCellExperiment and Seurat for scRNA-seq and scATAC-seq respectively. There are many tools available to do this and we are sharing our approach for format conversion, namely monocletoanndata.R and Seurattoanndata.R.
The following Jupyter notebooks follow the notebooks of the scGLUE integration pipeline.
- G1nbgluepreprocessingmyeloid.ipynb – preprocess scRNA-seq and scATAC-seq anndata objects
- G2gluemodel_myeloid.ipynb – create glue model
- G3regulatoryinference_myeloid.ipynb
- G4regulatorynetworkplotsmyeloid.ipynb
Finally, Figures.R generates publication figures.
Owner
- Name: Computational Systems Biology Group
- Login: csbg
- Kind: organization
- Location: Salzburg, AT
- Website: www.plus.ac.at/fortelny
- Repositories: 1
- Profile: https://github.com/csbg
The Fortelny Lab at the University of Salzburg
Citation (CITATION.cff)
cff-version: 1.2.0
message: If you use this software, please cite both the article from preferred-citation and the software itself.
title: scRNA-seq and scATAC-seq analysis scripts
authors:
- family-names: Esser-Skala
given-names: Wolfgang
orcid: https://orcid.org/0000-0002-7350-4045
- family-names: Dnyansagar
given-names: Rohit
orcid: https://orcid.org/0000-0002-2699-0087
- family-names: Sindelar
given-names: Samuel
- family-names: Lazic
given-names: Daria
orcid: https://orcid.org/0000-0002-8793-6885
- family-names: Fortelny
given-names: Nikolaus
orcid: https://orcid.org/0000-0003-4025-9968
version: 1.2.0
type: software
license: MIT
doi: 10.5281/zenodo.7867892
repository-code: https://github.com/csbg/neuroblastoma
preferred-citation:
type: article
authors:
- family-names: Fetahu
given-names: Irfete S.
affiliation: St. Anna Children's Cancer Research Institute, Vienna, Austria
orcid: https://orcid.org/0000-0002-0468-7458
email: irfete.fetahu@ccri.at
- family-names: Esser-Skala
given-names: Wolfgang
affiliation: Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
orcid: https://orcid.org/0000-0002-7350-4045
- family-names: Dnyansagar
given-names: Rohit
affiliation: Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
orcid: https://orcid.org/0000-0002-2699-0087
- family-names: Sindelar
given-names: Samuel
affiliation: Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
- family-names: Rifatbegovic
given-names: Fikret
affiliation: St. Anna Children's Cancer Research Institute, Vienna, Austria
orcid: https://orcid.org/0000-0002-9956-2382
- family-names: Bileck
given-names: Andrea
affiliation: Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria; and Joint Metabolomics Facility, University and Medical University of Vienna, Vienna, Austria
orcid: https://orcid.org/0000-0002-7053-8856
- family-names: Skos
given-names: Lukas
affiliation: Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
orcid: https://orcid.org/0000-0003-3983-1736
- family-names: Bozsaky
given-names: Eva
affiliation: St. Anna Children's Cancer Research Institute, Vienna, Austria
- family-names: Lazic
given-names: Daria
affiliation: St. Anna Children's Cancer Research Institute, Vienna, Austria
orcid: https://orcid.org/0000-0002-8793-6885
- family-names: Shaw
given-names: Lisa
affiliation: Department of Dermatology, Medical University of Vienna, Vienna, Austria
- family-names: Tötzl
given-names: Marcus
affiliation: St. Anna Children's Cancer Research Institute, Vienna, Austria
- family-names: Tarlungeanu
given-names: Dora
affiliation: St. Anna Children's Cancer Research Institute, Vienna, Austria
- family-names: Bernkopf
given-names: Marie
affiliation: St. Anna Children's Cancer Research Institute, Vienna, Austria
- family-names: Rados
given-names: Magdalena
affiliation: St. Anna Children's Cancer Research Institute, Vienna, Austria
- family-names: Weninger
given-names: Wolfgang
affiliation: Department of Dermatology, Medical University of Vienna, Vienna, Austria
- family-names: Tomazou
given-names: Eleni M.
affiliation: St. Anna Children's Cancer Research Institute, Vienna, Austria
orcid: https://orcid.org/0000-0002-7497-4567
- family-names: Bock
given-names: Christoph
affiliation: CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria; and Center for Medical Statistics, Informatics and Intelligent Systems, Institute of Artificial Intelligence, Medical University of Vienna, Vienna, Austria
orcid: https://orcid.org/0000-0001-6091-3088
- family-names: Gerner
given-names: Christopher
affiliation: Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria; and Joint Metabolomics Facility, University and Medical University of Vienna, Vienna, Austria
orcid: https://orcid.org/0000-0003-4964-0642
- family-names: Ladenstein
given-names: Ruth
affiliation: St. Anna Children's Cancer Research Institute, Vienna, Austria
orcid: https://orcid.org/0000-0001-6548-3873
- family-names: Farlik
given-names: Matthias
affiliation: Department of Dermatology, Medical University of Vienna, Vienna, Austria
orcid: https://orcid.org/0000-0003-0698-2992
- family-names: Fortelny
given-names: Nikolaus
affiliation: Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
orcid: https://orcid.org/0000-0003-4025-9968
email: nikolaus.fortelny@plus.ac.at
- family-names: Taschner-Mandl
given-names: Sabine
affiliation: St. Anna Children's Cancer Research Institute, Vienna, Austria
orcid: https://orcid.org/0000-0002-1439-5301
email: sabine.taschner@ccri.at
title: Single-cell transcriptomics and epigenomics unravel the role of monocytes in neuroblastoma bone marrow metastasis
journal: Nature Communications
volume: 14
pages: 3620
year: 2023
doi: 10.1038/s41467-023-39210-0
license: CC-BY-4.0
pmcid: PMC10293285
GitHub Events
Total
- Watch event: 1
Last Year
- Watch event: 1