skimpy
skimpy is a light weight tool that provides summary statistics about variables in data frames within the console.
Science Score: 44.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
✓CITATION.cff file
Found CITATION.cff file -
✓codemeta.json file
Found codemeta.json file -
✓.zenodo.json file
Found .zenodo.json file -
○DOI references
-
○Academic publication links
-
○Committers with academic emails
-
○Institutional organization owner
-
○JOSS paper metadata
-
○Scientific vocabulary similarity
Low similarity (13.2%) to scientific vocabulary
Keywords
Repository
skimpy is a light weight tool that provides summary statistics about variables in data frames within the console.
Basic Info
- Host: GitHub
- Owner: aeturrell
- License: mit
- Language: Python
- Default Branch: main
- Homepage: https://aeturrell.github.io/skimpy/
- Size: 4.97 MB
Statistics
- Stars: 466
- Watchers: 7
- Forks: 24
- Open Issues: 6
- Releases: 16
Topics
Metadata Files
README.md
Skimpy
A light weight tool for creating summary statistics from dataframes.


skimpy is a light weight tool that provides summary statistics about variables in pandas or Polars data frames within the console or your interactive Python window.
Think of it as a super-charged version of pandas' df.describe().
You can find the documentation here.
Quickstart
skim a pandas or polars dataframe and produce summary statistics within the console
using:
```python from skimpy import skim
skim(df) ```
where df is a pandas or polars dataframe.
If you need to a dataset to try skimpy out on, you can use the built-in test Pandas data frame:
```python from skimpy import generatetestdata, skim
df = generatetestdata() skim(df) ```
╭──────────────────────────────────────────────── skimpy summary ─────────────────────────────────────────────────╮ │ Data Summary Data Types Categories │ │ ┏━━━━━━━━━━━━━━━━━━━┳━━━━━━━━┓ ┏━━━━━━━━━━━━━┳━━━━━━━┓ ┏━━━━━━━━━━━━━━━━━━━━━━━┓ │ │ ┃ Dataframe ┃ Values ┃ ┃ Column Type ┃ Count ┃ ┃ Categorical Variables ┃ │ │ ┡━━━━━━━━━━━━━━━━━━━╇━━━━━━━━┩ ┡━━━━━━━━━━━━━╇━━━━━━━┩ ┡━━━━━━━━━━━━━━━━━━━━━━━┩ │ │ │ Number of rows │ 1000 │ │ float64 │ 3 │ │ class │ │ │ │ Number of columns │ 13 │ │ category │ 2 │ │ location │ │ │ └───────────────────┴────────┘ │ datetime64 │ 2 │ └───────────────────────┘ │ │ │ object │ 2 │ │ │ │ int64 │ 1 │ │ │ │ bool │ 1 │ │ │ │ string │ 1 │ │ │ │ timedelta64 │ 1 │ │ │ └─────────────┴───────┘ │ │ number │ │ ┏━━━━━━━━━┳━━━━━━┳━━━━━━━┳━━━━━━━━━━━┳━━━━━━━━━┳━━━━━━━━━━━━┳━━━━━━━━━┳━━━━━━━━━━━━┳━━━━━━━━┳━━━━━━━┳━━━━━━━━┓ │ │ ┃ column ┃ NA ┃ NA % ┃ mean ┃ sd ┃ p0 ┃ p25 ┃ p50 ┃ p75 ┃ p100 ┃ hist ┃ │ │ ┡━━━━━━━━━╇━━━━━━╇━━━━━━━╇━━━━━━━━━━━╇━━━━━━━━━╇━━━━━━━━━━━━╇━━━━━━━━━╇━━━━━━━━━━━━╇━━━━━━━━╇━━━━━━━╇━━━━━━━━┩ │ │ │ length │ 0 │ 0 │ 0.5016 │ 0.3597 │ 1.573e-06 │ 0.134 │ 0.4976 │ 0.8602 │ 1 │ ▇▃▃▃▅▇ │ │ │ │ width │ 0 │ 0 │ 2.037 │ 1.929 │ 0.002057 │ 0.603 │ 1.468 │ 2.953 │ 13.91 │ ▇▃▁ │ │ │ │ depth │ 0 │ 0 │ 10.02 │ 3.208 │ 2 │ 8 │ 10 │ 12 │ 20 │ ▁▃▇▆▃▁ │ │ │ │ rnd │ 118 │ 11.8 │ -0.01977 │ 1.002 │ -2.809 │ -0.7355 │ -0.0007736 │ 0.6639 │ 3.717 │ ▁▅▇▅▁ │ │ │ └─────────┴──────┴───────┴───────────┴─────────┴────────────┴─────────┴────────────┴────────┴───────┴────────┘ │ │ category │ │ ┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━┓ │ │ ┃ column ┃ NA ┃ NA % ┃ ordered ┃ unique ┃ │ │ ┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━┩ │ │ │ class │ 0 │ 0 │ False │ 2 │ │ │ │ location │ 1 │ 0.1 │ False │ 5 │ │ │ └─────────────────────────────┴────────────┴─────────────────┴─────────────────────────┴─────────────────────┘ │ │ bool │ │ ┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━┓ │ │ ┃ column ┃ true ┃ true rate ┃ hist ┃ │ │ ┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━┩ │ │ │ booly_col │ 516 │ 0.52 │ ▇ ▇ │ │ │ └─────────────────────────────────┴──────────────────┴────────────────────────────────┴──────────────────────┘ │ │ datetime │ │ ┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━┳━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━┓ │ │ ┃ column ┃ NA ┃ NA % ┃ first ┃ last ┃ frequency ┃ │ │ ┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━╇━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━┩ │ │ │ datetime │ 0 │ 0 │ 2018-01-31 │ 2101-04-30 │ ME │ │ │ │ datetime_no_freq │ 3 │ 0.3 │ 1992-01-05 │ 2023-03-04 │ None │ │ │ └──────────────────────────────┴───────┴──────────┴────────────────────┴───────────────────┴─────────────────┘ │ │ <class 'datetime.date'> │ │ ┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━┳━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━┓ │ │ ┃ column ┃ NA ┃ NA % ┃ first ┃ last ┃ frequency ┃ │ │ ┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━╇━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━┩ │ │ │ datetime.date │ 0 │ 0 │ 2018-01-31 │ 2101-04-30 │ ME │ │ │ │ datetime.date_no_freq │ 0 │ 0 │ 1992-01-05 │ 2023-03-04 │ None │ │ │ └──────────────────────────────────┴───────┴──────────┴──────────────────┴──────────────────┴────────────────┘ │ │ timedelta64 │ │ ┏━━━━━━━━━━━━━━━━┳━━━━━━┳━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┓ │ │ ┃ column ┃ NA ┃ NA % ┃ mean ┃ median ┃ max ┃ │ │ ┡━━━━━━━━━━━━━━━━╇━━━━━━╇━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━┩ │ │ │ time diff │ 5 │ 0.5 │ 8 days 00:05:47 │ 0 days 00:00:00 │ 26 days 00:00:00 │ │ │ └────────────────┴──────┴─────────┴────────────────────────┴────────────────────────┴────────────────────────┘ │ │ string │ │ ┏━━━━━━━━┳━━━━┳━━━━━━┳━━━━━━━━━━━━┳━━━━━━━━━━━┳━━━━━━━━━━━━┳━━━━━━━━━━━┳━━━━━━━━━━━━┳━━━━━━━━━━━┳━━━━━━━━━━━━┓ │ │ ┃ ┃ ┃ ┃ ┃ ┃ ┃ ┃ chars per ┃ words per ┃ total ┃ │ │ ┃ column ┃ NA ┃ NA % ┃ shortest ┃ longest ┃ min ┃ max ┃ row ┃ row ┃ words ┃ │ │ ┡━━━━━━━━╇━━━━╇━━━━━━╇━━━━━━━━━━━━╇━━━━━━━━━━━╇━━━━━━━━━━━━╇━━━━━━━━━━━╇━━━━━━━━━━━━╇━━━━━━━━━━━╇━━━━━━━━━━━━┩ │ │ │ text │ 6 │ 0.6 │ How are │ Indeed, │ How are │ What │ 31.1 │ 5.8 │ 5761 │ │ │ │ │ │ │ you? │ it was │ you? │ weather! │ │ │ │ │ │ │ │ │ │ │ the most │ │ │ │ │ │ │ │ │ │ │ │ │ outrageou │ │ │ │ │ │ │ │ │ │ │ │ │ sly │ │ │ │ │ │ │ │ │ │ │ │ │ pompous │ │ │ │ │ │ │ │ │ │ │ │ │ cat I │ │ │ │ │ │ │ │ │ │ │ │ │ have ever │ │ │ │ │ │ │ │ │ │ │ │ │ seen. │ │ │ │ │ │ │ │ └────────┴────┴──────┴────────────┴───────────┴────────────┴───────────┴────────────┴───────────┴────────────┘ │ │ object │ │ ┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┓ │ │ ┃ column ┃ NA ┃ NA % ┃ │ │ ┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━┩ │ │ │ datetime.date │ 0 │ 0 │ │ │ │ datetime.date_no_freq │ 0 │ 0 │ │ │ └─────────────────────────────────────────────────────────────────────────┴──────────────┴───────────────────┘ │ ╰────────────────────────────────────────────────────── End ──────────────────────────────────────────────────────╯
It is recommended that you set your datatypes before using skimpy (for example converting any text columns to pandas string datatype), as this will produce richer statistical summaries. However, the skim() function will try and guess what the datatypes of your columns are.
Requirements
You can find a full list of requirements in the pyproject.toml file.
You can try this package out right now in your browser using this Google Colab notebook (requires a Google account). Note that the Google Colab notebook uses the latest package released on PyPI (rather than the development release).
Installation
You can install the latest release of skimpy via pip from PyPI:
bash
$ pip install skimpy
To install the development version from git, use:
bash
$ pip install git+https://github.com/aeturrell/skimpy.git
For development, see contributing.
License
Distributed under the terms of the MIT license, skimpy is free and open source software.
Issues
If you encounter any problems, please file an issue along with a detailed description.
Credits
This project was generated from \@cjolowicz\'s Hypermodern Python Cookiecutter template.
skimpy was inspired by the R package skimr and by exploratory Python packages including ydata_profiling and dataprep, from which the clean_columns function comes.
This package would not have been possible without the Rich package.
The package is built with poetry, while the documentation is built with Quarto and Quartodoc (a Python package). Tests are run with nox.
Using skimpy in your paper? Let us know by raising an issue beginning with "citation" and we'll add it to this page.
Owner
- Login: aeturrell
- Kind: user
- Website: www.aeturrell.com
- Repositories: 9
- Profile: https://github.com/aeturrell
Citation (CITATION.cff)
cff-version: 1.2.0 message: "Want to cite this software? Use the below." authors: - family-names: "Turrell" given-names: "Arthur" orcid: "https://orcid.org/0000-0002-2525-0773" title: "Skimpy: a Python package for producing visual summary statistics of pandas and polars data frames" version: 0.0.11 doi: https://pypi.org/project/skimpy/ date-released: 2023-09-11 url: "https://github.com/aeturrell/skimpy"
GitHub Events
Total
- Create event: 76
- Release event: 3
- Issues event: 20
- Watch event: 74
- Delete event: 76
- Issue comment event: 61
- Push event: 102
- Pull request review event: 1
- Pull request event: 158
- Fork event: 5
Last Year
- Create event: 76
- Release event: 3
- Issues event: 20
- Watch event: 74
- Delete event: 76
- Issue comment event: 61
- Push event: 102
- Pull request review event: 1
- Pull request event: 158
- Fork event: 5
Committers
Last synced: almost 3 years ago
All Time
- Total Commits: 256
- Total Committers: 4
- Avg Commits per committer: 64.0
- Development Distribution Score (DDS): 0.262
Top Committers
| Name | Commits | |
|---|---|---|
| dependabot[bot] | 4****]@u****m | 189 |
| aeturrell | a****l@g****m | 60 |
| aeturrell | a****l@u****m | 6 |
| Rumi Allbert | 5****t@u****m | 1 |
Issues and Pull Requests
Last synced: 6 months ago
All Time
- Total issues: 45
- Total pull requests: 572
- Average time to close issues: 3 months
- Average time to close pull requests: 8 days
- Total issue authors: 24
- Total pull request authors: 7
- Average comments per issue: 1.47
- Average comments per pull request: 0.33
- Merged pull requests: 380
- Bot issues: 0
- Bot pull requests: 515
Past Year
- Issues: 15
- Pull requests: 123
- Average time to close issues: about 1 month
- Average time to close pull requests: 8 days
- Issue authors: 7
- Pull request authors: 5
- Average comments per issue: 1.33
- Average comments per pull request: 0.44
- Merged pull requests: 68
- Bot issues: 0
- Bot pull requests: 101
Top Authors
Issue Authors
- aeturrell (19)
- dependabot[bot] (4)
- GegznaV (2)
- bsdz (2)
- TerryGamon (2)
- 001ben (1)
- tian2992 (1)
- MartinBernstorff (1)
- thdevine (1)
- srvanderplas (1)
- aborruso (1)
- thewchan (1)
- jnhyeon (1)
- simonaubertbd (1)
- harishb00 (1)
Pull Request Authors
- dependabot[bot] (776)
- aeturrell (68)
- galenseilis (2)
- bbrewington (2)
- thewchan (2)
- Gabriel0110 (2)
- ghilesmeddour (1)
- RumiAllbert (1)
Top Labels
Issue Labels
Pull Request Labels
Packages
- Total packages: 2
-
Total downloads:
- pypi 12,627 last-month
-
Total dependent packages: 2
(may contain duplicates) -
Total dependent repositories: 42
(may contain duplicates) - Total versions: 34
- Total maintainers: 1
pypi.org: skimpy
skimpy
- Documentation: https://skimpy.readthedocs.io/
- License: MIT License Copyright (c) 2025 Arthur Turrell Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
-
Latest release: 0.0.18
published about 1 year ago
Rankings
Maintainers (1)
proxy.golang.org: github.com/aeturrell/skimpy
- Documentation: https://pkg.go.dev/github.com/aeturrell/skimpy#section-documentation
- License: mit
-
Latest release: v0.0.18
published about 1 year ago
Rankings
Dependencies
- actions/checkout v3 composite
- crazy-max/ghaction-github-labeler v4.1.0 composite
- actions/checkout v3 composite
- actions/setup-python v4.5.0 composite
- pypa/gh-action-pypi-publish v1.6.4 composite
- release-drafter/release-drafter v5.22.0 composite
- salsify/action-detect-and-tag-new-version v2.0.3 composite
- actions/cache v3.2.5 composite
- actions/checkout v3 composite
- actions/download-artifact v3 composite
- actions/setup-python v4.5.0 composite
- actions/upload-artifact v3 composite
- codecov/codecov-action v3.1.1 composite
- 197 dependencies
- Pygments ^2.9.0 develop
- autopep8 ^1.7.0 develop
- black ^22.12.0 develop
- coverage ^7.1 develop
- darglint ^1.8.1 develop
- flake8 ^5.0.4 develop
- flake8-bandit ^4.1.1 develop
- flake8-bugbear ^23.1.20 develop
- flake8-docstrings ^1.6.0 develop
- flake8-rst-docstrings ^0.2.3 develop
- furo ^2022.9.29 develop
- ghp-import ^2.1.0 develop
- jupyter ^1.0.0 develop
- jupyter-book ^0.13.1 develop
- jupyterlab ^3.5.3 develop
- matplotlib ^3.6.3 develop
- mypy ^1.0 develop
- nbstripout ^0.6.1 develop
- nox ^2022.11.21 develop
- pep8-naming ^0.13.2 develop
- pre-commit ^2.16.0 develop
- pre-commit-hooks ^4.4.0 develop
- pytest ^7.2.1 develop
- reorder-python-imports ^3.9.0 develop
- safety ^2.3.5 develop
- typeguard ^2.12.1 develop
- xdoctest ^1.1.1 develop
- Pygments ^2.10.0
- click ^8.1.3
- ipykernel ^6.7.0
- jupyter ^1.0.0
- numpy ^1.22.2
- pandas ^1.3.2
- python >=3.8,<4.0.0
- rich >=10.9,<14.0
- typeguard ^2.12.1