skimpy

skimpy is a light weight tool that provides summary statistics about variables in data frames within the console.

https://github.com/aeturrell/skimpy

Science Score: 44.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
    Found CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
    Found .zenodo.json file
  • DOI references
  • Academic publication links
  • Committers with academic emails
  • Institutional organization owner
  • JOSS paper metadata
  • Scientific vocabulary similarity
    Low similarity (13.2%) to scientific vocabulary

Keywords

data-science eda exploratory-data-analysis pandas statistics summary-statistics
Last synced: 6 months ago · JSON representation ·

Repository

skimpy is a light weight tool that provides summary statistics about variables in data frames within the console.

Basic Info
Statistics
  • Stars: 466
  • Watchers: 7
  • Forks: 24
  • Open Issues: 6
  • Releases: 16
Topics
data-science eda exploratory-data-analysis pandas statistics summary-statistics
Created over 4 years ago · Last pushed 7 months ago
Metadata Files
Readme Contributing License Code of conduct Citation

README.md

Skimpy

A light weight tool for creating summary statistics from dataframes. png

PyPI Status Python Version License Read the documentation at https://aeturrell.github.io/skimpy/ Tests Codecov pre-commit Ruff Google Colab Downloads Source

Linux macOS Windows

skimpy is a light weight tool that provides summary statistics about variables in pandas or Polars data frames within the console or your interactive Python window.

Think of it as a super-charged version of pandas' df.describe(). You can find the documentation here.

Quickstart

skim a pandas or polars dataframe and produce summary statistics within the console using:

```python from skimpy import skim

skim(df) ```

where df is a pandas or polars dataframe.

If you need to a dataset to try skimpy out on, you can use the built-in test Pandas data frame:

```python from skimpy import generatetestdata, skim

df = generatetestdata() skim(df) ```

╭──────────────────────────────────────────────── skimpy summary ─────────────────────────────────────────────────╮
│          Data Summary                Data Types               Categories                                        │
│ ┏━━━━━━━━━━━━━━━━━━━┳━━━━━━━━┓ ┏━━━━━━━━━━━━━┳━━━━━━━┓ ┏━━━━━━━━━━━━━━━━━━━━━━━┓                                │
│ ┃ Dataframe          Values ┃ ┃ Column Type  Count ┃ ┃ Categorical Variables ┃                                │
│ ┡━━━━━━━━━━━━━━━━━━━╇━━━━━━━━┩ ┡━━━━━━━━━━━━━╇━━━━━━━┩ ┡━━━━━━━━━━━━━━━━━━━━━━━┩                                │
│ │ Number of rows    │ 1000   │ │ float64     │ 3     │ │ class                 │                                │
│ │ Number of columns │ 13     │ │ category    │ 2     │ │ location              │                                │
│ └───────────────────┴────────┘ │ datetime64  │ 2     │ └───────────────────────┘                                │
│                                │ object      │ 2     │                                                          │
│                                │ int64       │ 1     │                                                          │
│                                │ bool        │ 1     │                                                          │
│                                │ string      │ 1     │                                                          │
│                                │ timedelta64 │ 1     │                                                          │
│                                └─────────────┴───────┘                                                          │
│                                                     number                                                      │
│ ┏━━━━━━━━━┳━━━━━━┳━━━━━━━┳━━━━━━━━━━━┳━━━━━━━━━┳━━━━━━━━━━━━┳━━━━━━━━━┳━━━━━━━━━━━━┳━━━━━━━━┳━━━━━━━┳━━━━━━━━┓  │
│ ┃ column   NA    NA %   mean       sd       p0          p25      p50         p75     p100   hist   ┃  │
│ ┡━━━━━━━━━╇━━━━━━╇━━━━━━━╇━━━━━━━━━━━╇━━━━━━━━━╇━━━━━━━━━━━━╇━━━━━━━━━╇━━━━━━━━━━━━╇━━━━━━━━╇━━━━━━━╇━━━━━━━━┩  │
│ │ length    0    0   0.5016 0.3597 1.573e-06  0.134    0.49760.8602    1▇▃▃▃▅▇ │  │
│ │ width     0    0    2.037  1.929  0.002057  0.603     1.468 2.95313.91 ▇▃▁   │  │
│ │ depth     0    0    10.02  3.208         2      8        10    12   20▁▃▇▆▃▁ │  │
│ │ rnd     118 11.8 -0.01977  1.002    -2.809-0.7355-0.00077360.66393.717▁▅▇▅▁  │  │
│ └─────────┴──────┴───────┴───────────┴─────────┴────────────┴─────────┴────────────┴────────┴───────┴────────┘  │
│                                                    category                                                     │
│ ┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━┓  │
│ ┃ column                       NA          NA %             ordered                  unique              ┃  │
│ ┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━┩  │
│ │ class                               0              0False                                    2 │  │
│ │ location                            1            0.1False                                    5 │  │
│ └─────────────────────────────┴────────────┴─────────────────┴─────────────────────────┴─────────────────────┘  │
│                                                      bool                                                       │
│ ┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━┓  │
│ ┃ column                           true              true rate                       hist                 ┃  │
│ ┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━┩  │
│ │ booly_col                                   516                          0.52       ▇    ▇        │  │
│ └─────────────────────────────────┴──────────────────┴────────────────────────────────┴──────────────────────┘  │
│                                                    datetime                                                     │
│ ┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━┳━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━┓  │
│ ┃ column                        NA     NA %      first               last               frequency       ┃  │
│ ┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━╇━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━┩  │
│ │ datetime                        0       0    2018-01-31       2101-04-30    ME              │  │
│ │ datetime_no_freq                3     0.3    1992-01-05       2023-03-04    None            │  │
│ └──────────────────────────────┴───────┴──────────┴────────────────────┴───────────────────┴─────────────────┘  │
│                                            <class 'datetime.date'>                                              │
│ ┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━┳━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━┓  │
│ ┃ column                            NA     NA %      first             last              frequency      ┃  │
│ ┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━╇━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━┩  │
│ │ datetime.date                       0       02018-01-31      2101-04-30      ME             │  │
│ │ datetime.date_no_freq               0       01992-01-05      2023-03-04      None           │  │
│ └──────────────────────────────────┴───────┴──────────┴──────────────────┴──────────────────┴────────────────┘  │
│                                                  timedelta64                                                    │
│ ┏━━━━━━━━━━━━━━━━┳━━━━━━┳━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┓  │
│ ┃ column          NA    NA %     mean                    median                  max                    ┃  │
│ ┡━━━━━━━━━━━━━━━━╇━━━━━━╇━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━┩  │
│ │ time diff        5    0.5       8 days 00:05:47       0 days 00:00:00      26 days 00:00:00 │  │
│ └────────────────┴──────┴─────────┴────────────────────────┴────────────────────────┴────────────────────────┘  │
│                                                     string                                                      │
│ ┏━━━━━━━━┳━━━━┳━━━━━━┳━━━━━━━━━━━━┳━━━━━━━━━━━┳━━━━━━━━━━━━┳━━━━━━━━━━━┳━━━━━━━━━━━━┳━━━━━━━━━━━┳━━━━━━━━━━━━┓  │
│ ┃                                                                 chars per   words per  total      ┃  │
│ ┃ column  NA  NA %  shortest    longest    min         max        row         row        words      ┃  │
│ ┡━━━━━━━━╇━━━━╇━━━━━━╇━━━━━━━━━━━━╇━━━━━━━━━━━╇━━━━━━━━━━━━╇━━━━━━━━━━━╇━━━━━━━━━━━━╇━━━━━━━━━━━╇━━━━━━━━━━━━┩  │
│ │ text   6 0.6How are   Indeed,  How are   What           31.1      5.8      5761 │  │
│ │        │    │      │ you?      it was   you?      weather!  │            │           │            │  │
│ │        │    │      │            │ the most  │            │           │            │           │            │  │
│ │        │    │      │            │ outrageou │            │           │            │           │            │  │
│ │        │    │      │            │ sly       │            │           │            │           │            │  │
│ │        │    │      │            │ pompous   │            │           │            │           │            │  │
│ │        │    │      │            │ cat I     │            │           │            │           │            │  │
│ │        │    │      │            │ have ever │            │           │            │           │            │  │
│ │        │    │      │            │ seen.     │            │           │            │           │            │  │
│ └────────┴────┴──────┴────────────┴───────────┴────────────┴───────────┴────────────┴───────────┴────────────┘  │
│                                                     object                                                      │
│ ┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┓  │
│ ┃ column                                                                   NA            NA %              ┃  │
│ ┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━┩  │
│ │ datetime.date                                                                     0                0 │  │
│ │ datetime.date_no_freq                                                             0                0 │  │
│ └─────────────────────────────────────────────────────────────────────────┴──────────────┴───────────────────┘  │
╰────────────────────────────────────────────────────── End ──────────────────────────────────────────────────────╯

It is recommended that you set your datatypes before using skimpy (for example converting any text columns to pandas string datatype), as this will produce richer statistical summaries. However, the skim() function will try and guess what the datatypes of your columns are.

Requirements

You can find a full list of requirements in the pyproject.toml file.

You can try this package out right now in your browser using this Google Colab notebook (requires a Google account). Note that the Google Colab notebook uses the latest package released on PyPI (rather than the development release).

Installation

You can install the latest release of skimpy via pip from PyPI:

bash $ pip install skimpy

To install the development version from git, use:

bash $ pip install git+https://github.com/aeturrell/skimpy.git

For development, see contributing.

License

Distributed under the terms of the MIT license, skimpy is free and open source software.

Issues

If you encounter any problems, please file an issue along with a detailed description.

Credits

This project was generated from \@cjolowicz\'s Hypermodern Python Cookiecutter template.

skimpy was inspired by the R package skimr and by exploratory Python packages including ydata_profiling and dataprep, from which the clean_columns function comes.

This package would not have been possible without the Rich package.

The package is built with poetry, while the documentation is built with Quarto and Quartodoc (a Python package). Tests are run with nox.

Using skimpy in your paper? Let us know by raising an issue beginning with "citation" and we'll add it to this page.

Owner

  • Login: aeturrell
  • Kind: user

Citation (CITATION.cff)

cff-version: 1.2.0
message: "Want to cite this software? Use the below."
authors:
- family-names: "Turrell"
  given-names: "Arthur"
  orcid: "https://orcid.org/0000-0002-2525-0773"
title: "Skimpy: a Python package for producing visual summary statistics of pandas and polars data frames"
version: 0.0.11
doi: https://pypi.org/project/skimpy/
date-released: 2023-09-11
url: "https://github.com/aeturrell/skimpy"

GitHub Events

Total
  • Create event: 76
  • Release event: 3
  • Issues event: 20
  • Watch event: 74
  • Delete event: 76
  • Issue comment event: 61
  • Push event: 102
  • Pull request review event: 1
  • Pull request event: 158
  • Fork event: 5
Last Year
  • Create event: 76
  • Release event: 3
  • Issues event: 20
  • Watch event: 74
  • Delete event: 76
  • Issue comment event: 61
  • Push event: 102
  • Pull request review event: 1
  • Pull request event: 158
  • Fork event: 5

Committers

Last synced: almost 3 years ago

All Time
  • Total Commits: 256
  • Total Committers: 4
  • Avg Commits per committer: 64.0
  • Development Distribution Score (DDS): 0.262
Top Committers
Name Email Commits
dependabot[bot] 4****]@u****m 189
aeturrell a****l@g****m 60
aeturrell a****l@u****m 6
Rumi Allbert 5****t@u****m 1

Issues and Pull Requests

Last synced: 6 months ago

All Time
  • Total issues: 45
  • Total pull requests: 572
  • Average time to close issues: 3 months
  • Average time to close pull requests: 8 days
  • Total issue authors: 24
  • Total pull request authors: 7
  • Average comments per issue: 1.47
  • Average comments per pull request: 0.33
  • Merged pull requests: 380
  • Bot issues: 0
  • Bot pull requests: 515
Past Year
  • Issues: 15
  • Pull requests: 123
  • Average time to close issues: about 1 month
  • Average time to close pull requests: 8 days
  • Issue authors: 7
  • Pull request authors: 5
  • Average comments per issue: 1.33
  • Average comments per pull request: 0.44
  • Merged pull requests: 68
  • Bot issues: 0
  • Bot pull requests: 101
Top Authors
Issue Authors
  • aeturrell (19)
  • dependabot[bot] (4)
  • GegznaV (2)
  • bsdz (2)
  • TerryGamon (2)
  • 001ben (1)
  • tian2992 (1)
  • MartinBernstorff (1)
  • thdevine (1)
  • srvanderplas (1)
  • aborruso (1)
  • thewchan (1)
  • jnhyeon (1)
  • simonaubertbd (1)
  • harishb00 (1)
Pull Request Authors
  • dependabot[bot] (776)
  • aeturrell (68)
  • galenseilis (2)
  • bbrewington (2)
  • thewchan (2)
  • Gabriel0110 (2)
  • ghilesmeddour (1)
  • RumiAllbert (1)
Top Labels
Issue Labels
enhancement (12) dependencies (8) bug (7) python (3) build (2) documentation (2) removal (1) good first issue (1) help wanted (1) question (1) github_actions (1)
Pull Request Labels
dependencies (776) python (619) github_actions (157)

Packages

  • Total packages: 2
  • Total downloads:
    • pypi 12,627 last-month
  • Total dependent packages: 2
    (may contain duplicates)
  • Total dependent repositories: 42
    (may contain duplicates)
  • Total versions: 34
  • Total maintainers: 1
pypi.org: skimpy

skimpy

  • Documentation: https://skimpy.readthedocs.io/
  • License: MIT License Copyright (c) 2025 Arthur Turrell Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
  • Latest release: 0.0.18
    published about 1 year ago
  • Versions: 17
  • Dependent Packages: 2
  • Dependent Repositories: 42
  • Downloads: 12,627 Last month
  • Docker Downloads: 0
Rankings
Dependent repos count: 2.3%
Dependent packages count: 3.2%
Downloads: 3.2%
Stargazers count: 3.5%
Average: 4.4%
Docker downloads count: 4.6%
Forks count: 9.6%
Maintainers (1)
Last synced: 7 months ago
proxy.golang.org: github.com/aeturrell/skimpy
  • Versions: 17
  • Dependent Packages: 0
  • Dependent Repositories: 0
Rankings
Dependent packages count: 6.5%
Average: 6.7%
Dependent repos count: 7.0%
Last synced: 7 months ago

Dependencies

.github/workflows/labeler.yml actions
  • actions/checkout v3 composite
  • crazy-max/ghaction-github-labeler v4.1.0 composite
.github/workflows/release.yml actions
  • actions/checkout v3 composite
  • actions/setup-python v4.5.0 composite
  • pypa/gh-action-pypi-publish v1.6.4 composite
  • release-drafter/release-drafter v5.22.0 composite
  • salsify/action-detect-and-tag-new-version v2.0.3 composite
.github/workflows/tests.yml actions
  • actions/cache v3.2.5 composite
  • actions/checkout v3 composite
  • actions/download-artifact v3 composite
  • actions/setup-python v4.5.0 composite
  • actions/upload-artifact v3 composite
  • codecov/codecov-action v3.1.1 composite
poetry.lock pypi
  • 197 dependencies
pyproject.toml pypi
  • Pygments ^2.9.0 develop
  • autopep8 ^1.7.0 develop
  • black ^22.12.0 develop
  • coverage ^7.1 develop
  • darglint ^1.8.1 develop
  • flake8 ^5.0.4 develop
  • flake8-bandit ^4.1.1 develop
  • flake8-bugbear ^23.1.20 develop
  • flake8-docstrings ^1.6.0 develop
  • flake8-rst-docstrings ^0.2.3 develop
  • furo ^2022.9.29 develop
  • ghp-import ^2.1.0 develop
  • jupyter ^1.0.0 develop
  • jupyter-book ^0.13.1 develop
  • jupyterlab ^3.5.3 develop
  • matplotlib ^3.6.3 develop
  • mypy ^1.0 develop
  • nbstripout ^0.6.1 develop
  • nox ^2022.11.21 develop
  • pep8-naming ^0.13.2 develop
  • pre-commit ^2.16.0 develop
  • pre-commit-hooks ^4.4.0 develop
  • pytest ^7.2.1 develop
  • reorder-python-imports ^3.9.0 develop
  • safety ^2.3.5 develop
  • typeguard ^2.12.1 develop
  • xdoctest ^1.1.1 develop
  • Pygments ^2.10.0
  • click ^8.1.3
  • ipykernel ^6.7.0
  • jupyter ^1.0.0
  • numpy ^1.22.2
  • pandas ^1.3.2
  • python >=3.8,<4.0.0
  • rich >=10.9,<14.0
  • typeguard ^2.12.1