multicom_ligand
Comprehensive ensembling of protein-ligand structure and affinity prediction methods (CASP16)
Science Score: 54.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
✓CITATION.cff file
Found CITATION.cff file -
✓codemeta.json file
Found codemeta.json file -
○.zenodo.json file
-
✓DOI references
Found 9 DOI reference(s) in README -
✓Academic publication links
Links to: nature.com, science.org, acs.org, zenodo.org -
○Academic email domains
-
○Institutional organization owner
-
○JOSS paper metadata
-
○Scientific vocabulary similarity
Low similarity (17.0%) to scientific vocabulary
Keywords
Repository
Comprehensive ensembling of protein-ligand structure and affinity prediction methods (CASP16)
Basic Info
Statistics
- Stars: 7
- Watchers: 2
- Forks: 0
- Open Issues: 0
- Releases: 2
Topics
Metadata Files
README.md
Description
Comprehensive ensembling of protein-ligand structure and affinity prediction methods
Contents
- Installation
- Tutorials
- How to prepare MULTICOM_ligand data
- Available inference methods
- How to run inference with individual methods
- How to run inference with a method ensemble
- How to create comparative plots of inference results
- For developers
- Acknowledgements
- Citing this work
- Bonus
Installation
Tutorials
How to prepare MULTICOM_ligand data
Available inference methods
How to run inference with individual methods
How to run inference with a method ensemble
How to create comparative plots of inference results
For developers
Acknowledgements
MULTICOM_ligand builds upon the source code and data from the following projects:
- AutoDock-Vina
- casp15_ligand
- DiffDock
- FABind
- DynamicBind
- FlowDock
- lightning-hydra-template
- NeuralPLexer
- posebusters
- posebusters_em
- PoseBench
- ProteinWorkshop
- RoseTTAFold-All-Atom
- tulip
We thank all their contributors and maintainers!
Citing this work
If you use the code or benchmark method predictions associated with this repository or otherwise find this work useful, please cite:
bibtex
@inproceedings{morehead2024multicom,
title={Protein-ligand structure and affinity prediction in CASP16 using a geometric deep learning ensemble and flow matching},
author={Morehead, Alex and Liu, Jian and Neupane, Pawan and Giri, Nabin and Cheng, Jianlin},
booktitle={CASP16 Abstracts},
year={2025},
note={presented at CASP16 as a top-5 ligand prediction method},
}
Bonus
Owner
- Name: BioinfoMachineLearning
- Login: BioinfoMachineLearning
- Kind: organization
- Repositories: 29
- Profile: https://github.com/BioinfoMachineLearning
Citation (citation.bib)
@inproceedings{morehead2024multicom,
title={Protein-ligand structure and affinity prediction in CASP16 using a geometric deep learning ensemble and flow matching},
author={Morehead, Alex and Liu, Jian and Neupane, Pawan and Giri, Nabin and Cheng, Jianlin},
booktitle={CASP16 Abstracts},
year={2025},
note={presented at CASP16 as a top-5 ligand prediction method},
}
GitHub Events
Total
- Release event: 1
- Watch event: 7
- Delete event: 1
- Public event: 1
- Push event: 22
- Create event: 2
Last Year
- Release event: 1
- Watch event: 7
- Delete event: 1
- Public event: 1
- Push event: 22
- Create event: 2
Dependencies
- actions/checkout v3 composite
- dangoslen/changelog-enforcer v3 composite
- actions/checkout v4 composite
- actions/setup-python v5 composite
- pre-commit/action v3.0.1 composite
- actions/checkout v4 composite
- actions/setup-python v5 composite
- pre-commit/action v3.0.1 composite
- trilom/file-changes-action v1.2.4 composite
- actions/checkout v4 composite
- actions/setup-python v5 composite
- conda-incubator/setup-miniconda v3 composite
- peaceiris/actions-gh-pages v4 composite
- actions/checkout v4 composite
- actions/setup-python v5 composite
- pypa/gh-action-pypi-publish v1.9.0 composite
- release-drafter/release-drafter v6 composite
- nvidia/cuda 11.7.1-devel-ubuntu22.04 build
- nvidia/cuda 11.7.1-runtime-ubuntu22.04 build
- rbgcsail/diffdock latest build
- nvidia/cuda 11.7.1-devel-ubuntu22.04 build
- ${FROM_IMAGE_NAME} latest build
- gradio ==3.50.
- requests *
- e3nn ==0.5.0
- fair-esm ==2.0.0
- networkx ==2.8.4
- pandas ==1.5.1
- prody ==2.2.0
- pybind11 ==2.11.1
- rdkit ==2022.03.3
- scikit-learn ==1.1.0
- scipy ==1.12.0
- torch ==1.13.1
- torch-cluster ==1.6.0
- torch-geometric ==2.2.0
- torch-scatter ==2.1.0
- torch-sparse ==0.6.16
- torch-spline-conv ==1.2.1
- torchmetrics ==0.11.0
- lightning *
- fairscale *
- mendeleev *
- pytorch-lightning <2.0.0
- seaborn *
- fairscale *
- mendeleev *
- pytorch-lightning <2.0.0
- seaborn *
- torch-scatter *
- dllogger *
- e3nn ==0.3.3
- pynvml ==11.0.0
- wandb ==0.12.0
- beartype *
- biopandas *
- biopython ==1.79
- hydra-colorlog ==1.2.0
- hydra-core ==1.3.2
- hydra-optuna-sweeper ==1.2.0
- ipykernel *
- jaxtyping >=0.2.12
- joblib *
- lightning *
- loguru *
- lovely-numpy *
- lovely-tensors *
- meeko *
- numpy *
- omegaconf *
- pandas >=1.3.5
- plotly *
- posebusters @ git+https://github.com/amorehead/posebusters.git@posebench
- pre-commit *
- prody *
- prolif *
- pydantic >=1.10.15
- pypdb *
- pyyaml *
- rdkit >=2023.3.2
- rich *
- rootutils *
- scikit-learn >=1.0.2
- seaborn *
- setuptools *
- spyrmsd *
- timeout_decorator >=0.5.0
- torch *
- torchmetrics *
- torchvision *
- tqdm *
- torch ==1.13.1
- biopython ==1.78
- brotlipy ==0.7.0
- cffi ==1.15.1
- comm ==0.1.2
- contourpy ==1.0.7
- cryptography ==38.0.4
- debugpy ==1.5.1
- e3nn ==0.5.1
- fair-esm ==2.0.0
- filelock ==3.9.0
- fonttools ==4.39.3
- gmpy2 ==2.1.2
- greenlet ==2.0.2
- idna ==3.4
- ipykernel ==6.19.2
- ipython ==8.12.0
- jedi ==0.18.1
- jinja2 ==3.1.2
- joblib ==1.1.1
- jupyter-client ==8.1.0
- jupyter-core ==5.3.0
- kiwisolver ==1.4.4
- markupsafe ==2.1.1
- matplotlib ==3.7.1
- matplotlib-inline ==0.1.6
- mkl-fft ==1.3.6
- mkl-random ==1.2.2
- mkl-service ==2.4.0
- mpmath ==1.2.1
- nest-asyncio ==1.5.6
- networkx ==2.8.4
- numpy ==1.24.3
- opt-einsum ==3.3.0
- opt-einsum-fx ==0.1.4
- pandas ==2.0.1
- pillow ==9.4.0
- pip ==23.0.1
- platformdirs ==2.5.2
- prompt-toolkit ==3.0.36
- psutil ==5.9.0
- pygments ==2.15.1
- pyopenssl ==23.0.0
- pysocks ==1.7.1
- pyyaml ==6.0
- pyzmq ==25.0.2
- reportlab ==3.6.13
- requests ==2.29.0
- scikit-learn ==1.2.2
- scipy ==1.10.1
- setuptools ==66.0.0
- spyrmsd ==0.5.2
- sqlalchemy ==1.4.46
- sympy ==1.11.1
- torch ==2.0.1
- torch-geometric ==2.3.0
- torchaudio ==2.0.2
- torchvision ==0.15.2
- tornado ==6.2
- tqdm ==4.65.0
- traitlets ==5.7.1
- triton ==2.0.0
- typing-extensions ==4.5.0
- unicodedata2 ==15.0.0
- urllib3 ==1.26.15
- wheel ==0.38.4
- PyYAML ==5.4.1
- biopython ==1.79
- deepspeed ==0.5.9
- dm-tree ==0.1.6
- ml-collections ==0.1.0
- numpy ==1.21.2
- pytorch_lightning ==1.5.10
- requests ==2.26.0
- scipy ==1.7.1
- tqdm ==4.62.2
- typing-extensions ==3.10.0.2
- wandb ==0.12.21