dvc

🦉 Data Versioning and ML Experiments

https://github.com/iterative/dvc

Science Score: 67.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • ✓
    CITATION.cff file
    Found CITATION.cff file
  • ✓
    codemeta.json file
    Found codemeta.json file
  • ✓
    .zenodo.json file
    Found .zenodo.json file
  • ✓
    DOI references
    Found 6 DOI reference(s) in README
  • â—‹
    Academic publication links
  • ✓
    Committers with academic emails
    3 of 310 committers (1.0%) from academic institutions
  • â—‹
    Institutional organization owner
  • â—‹
    JOSS paper metadata
  • â—‹
    Scientific vocabulary similarity
    Low similarity (12.2%) to scientific vocabulary

Keywords

ai data-science data-version-control developer-tools machine-learning reproducibility unstructured-data

Keywords from Contributors

cryptocurrency jax closember transformer cryptography data-mining pipeline-testing pydantic json-schema datacleaner
Last synced: 4 months ago · JSON representation ·

Repository

🦉 Data Versioning and ML Experiments

Basic Info
  • Host: GitHub
  • Owner: iterative
  • License: apache-2.0
  • Language: Python
  • Default Branch: main
  • Homepage: https://dvc.org
  • Size: 19.7 MB
Statistics
  • Stars: 14,820
  • Watchers: 134
  • Forks: 1,248
  • Open Issues: 211
  • Releases: 557
Topics
ai data-science data-version-control developer-tools machine-learning reproducibility unstructured-data
Created almost 9 years ago · Last pushed 4 months ago
Metadata Files
Readme Contributing License Code of conduct Citation Zenodo

README.rst

|Banner|

`Website `_
• `Docs `_
• `Blog `_
• `Tutorial `_
• `Related Technologies `_
• `How DVC works`_
• `VS Code Extension`_
• `Installation`_
• `Contributing`_
• `Community and Support`_

|CI| |Python Version| |Coverage| |VS Code| |DOI|

|PyPI| |PyPI Downloads| |Packages| |Brew| |Conda| |Choco| |Snap|

|

**Data Version Control** or **DVC** is a command line tool and `VS Code Extension`_ to help you develop reproducible machine learning projects:

#. **Version** your data and models.
   Store them in your cloud storage but keep their version info in your Git repo.

#. **Iterate** fast with lightweight pipelines.
   When you make changes, only run the steps impacted by those changes.

#. **Track** experiments in your local Git repo (no servers needed).

#. **Compare** any data, code, parameters, model, or performance plots.

#. **Share** experiments and automatically reproduce anyone's experiment.

Quick start
===========

    Please read our `Command Reference `_ for a complete list.

A common CLI workflow includes:


+-----------------------------------+----------------------------------------------------------------------------------------------------+
| Task                              | Terminal                                                                                           |
+===================================+====================================================================================================+
| Track data                        | | ``$ git add train.py params.yaml``                                                               |
|                                   | | ``$ dvc add images/``                                                                            |
+-----------------------------------+----------------------------------------------------------------------------------------------------+
| Connect code and data             | | ``$ dvc stage add -n featurize -d images/ -o features/ python featurize.py``                     |
|                                   | | ``$ dvc stage add -n train -d features/ -d train.py -o model.p -M metrics.json python train.py`` |
+-----------------------------------+----------------------------------------------------------------------------------------------------+
| Make changes and experiment       | | ``$ dvc exp run -n exp-baseline``                                                                |
|                                   | | ``$ vi train.py``                                                                                |
|                                   | | ``$ dvc exp run -n exp-code-change``                                                             |
+-----------------------------------+----------------------------------------------------------------------------------------------------+
| Compare and select experiments    | | ``$ dvc exp show``                                                                               |
|                                   | | ``$ dvc exp apply exp-baseline``                                                                 |
+-----------------------------------+----------------------------------------------------------------------------------------------------+
| Share code                        | | ``$ git add .``                                                                                  |
|                                   | | ``$ git commit -m 'The baseline model'``                                                         |
|                                   | | ``$ git push``                                                                                   |
+-----------------------------------+----------------------------------------------------------------------------------------------------+
| Share data and ML models          | | ``$ dvc remote add myremote -d s3://mybucket/image_cnn``                                         |
|                                   | | ``$ dvc push``                                                                                   |
+-----------------------------------+----------------------------------------------------------------------------------------------------+

How DVC works
=============

    We encourage you to read our `Get Started
    `_ docs to better understand what DVC
    does and how it can fit your scenarios.

The closest *analogies* to describe the main DVC features are these:

#. **Git for data**: Store and share data artifacts (like Git-LFS but without a server) and models, connecting them with a Git repository. Data management meets GitOps!
#. **Makefiles** for ML: Describes how data or model artifacts are built from other data and code in a standard format. Now you can version your data pipelines with Git.
#. Local **experiment tracking**: Turn your machine into an ML experiment management platform, and collaborate with others using existing Git hosting (Github, Gitlab, etc.).

Git is employed as usual to store and version code (including DVC meta-files as placeholders for data).
DVC `stores data and model files `_ seamlessly in a cache outside of Git, while preserving almost the same user experience as if they were in the repo.
To share and back up the *data cache*, DVC supports multiple remote storage platforms - any cloud (S3, Azure, Google Cloud, etc.) or on-premise network storage (via SSH, for example).

|Flowchart|

`DVC pipelines `_ (computational graphs) connect code and data together.
They specify all steps required to produce a model: input dependencies including code, data, commands to run; and output information to be saved.

Last but not least, `DVC Experiment Versioning `_ lets you prepare and run a large number of experiments.
Their results can be filtered and compared based on hyperparameters and metrics, and visualized with multiple plots.

.. _`VS Code Extension`:

VS Code Extension
=================

|VS Code|

To use DVC as a GUI right from your VS Code IDE, install the `DVC Extension `_ from the Marketplace.
It currently features experiment tracking and data management, and more features (data pipeline support, etc.) are coming soon!

|VS Code Extension Overview|

    Note: You'll have to install core DVC on your system separately (as detailed
    below). The Extension will guide you if needed.

Installation
============

There are several ways to install DVC: in VS Code; using ``snap``, ``choco``, ``brew``, ``conda``, ``pip``; or with an OS-specific package.
Full instructions are `available here `_.

Snapcraft (Linux)
-----------------

|Snap|

.. code-block:: bash

   snap install dvc --classic

This corresponds to the latest tagged release.
Add ``--beta`` for the latest tagged release candidate, or ``--edge`` for the latest ``main`` version.

Chocolatey (Windows)
--------------------

|Choco|

.. code-block:: bash

   choco install dvc

Brew (mac OS)
-------------

|Brew|

.. code-block:: bash

   brew install dvc

Anaconda (Any platform)
-----------------------

|Conda|

.. code-block:: bash

   conda install -c conda-forge mamba # installs much faster than conda
   mamba install -c conda-forge dvc

Depending on the remote storage type you plan to use to keep and share your data, you might need to install optional dependencies: `dvc-s3`, `dvc-azure`, `dvc-gdrive`, `dvc-gs`, `dvc-oss`, `dvc-ssh`.

PyPI (Python)
-------------

|PyPI|

.. code-block:: bash

   pip install dvc

Depending on the remote storage type you plan to use to keep and share your data, you might need to specify one of the optional dependencies: ``s3``, ``gs``, ``azure``, ``oss``, ``ssh``. Or ``all`` to include them all.
The command should look like this: ``pip install 'dvc[s3]'`` (in this case AWS S3 dependencies such as ``boto3`` will be installed automatically).

To install the development version, run:

.. code-block:: bash

   pip install git+git://github.com/iterative/dvc

Package (Platform-specific)
---------------------------

|Packages|

Self-contained packages for Linux, Windows, and Mac are available.
The latest version of the packages can be found on the GitHub `releases page `_.

Ubuntu / Debian (deb)
^^^^^^^^^^^^^^^^^^^^^
.. code-block:: bash

   sudo wget https://dvc.org/deb/dvc.list -O /etc/apt/sources.list.d/dvc.list
   wget -qO - https://dvc.org/deb/iterative.asc | sudo apt-key add -
   sudo apt update
   sudo apt install dvc

Fedora / CentOS (rpm)
^^^^^^^^^^^^^^^^^^^^^
.. code-block:: bash

   sudo wget https://dvc.org/rpm/dvc.repo -O /etc/yum.repos.d/dvc.repo
   sudo rpm --import https://dvc.org/rpm/iterative.asc
   sudo yum update
   sudo yum install dvc

Contributing
============

|Maintainability|

Contributions are welcome!
Please see our `Contributing Guide `_ for more details.
Thanks to all our contributors!

|Contribs|

Community and Support
=====================

* `Twitter `_
* `Forum `_
* `Discord Chat `_
* `Email `_
* `Mailing List `_

Copyright
=========

This project is distributed under the Apache license version 2.0 (see the LICENSE file in the project root).

By submitting a pull request to this project, you agree to license your contribution under the Apache license version 2.0 to this project.

Citation
========

|DOI|

Iterative, *DVC: Data Version Control - Git for Data & Models* (2020)
`DOI:10.5281/zenodo.012345 `_.

Barrak, A., Eghan, E.E. and Adams, B. `On the Co-evolution of ML Pipelines and Source Code - Empirical Study of DVC Projects `_ , in Proceedings of the 28th IEEE International Conference on Software Analysis, Evolution, and Reengineering, SANER 2021. Hawaii, USA.


.. |Banner| image:: https://dvc.org/img/logo-github-readme.png
   :target: https://dvc.org
   :alt: DVC logo

.. |VS Code Extension Overview| image:: https://raw.githubusercontent.com/iterative/vscode-dvc/main/extension/docs/overview.gif
   :alt: DVC Extension for VS Code

.. |CI| image:: https://github.com/iterative/dvc/actions/workflows/tests.yaml/badge.svg
   :target: https://github.com/iterative/dvc/actions/workflows/tests.yaml
   :alt: GHA Tests

.. |Maintainability| image:: https://img.shields.io/codeclimate/maintainability/iterative/dvc
   :target: https://codeclimate.com/github/iterative/dvc
   :alt: Code Climate

.. |Python Version| image:: https://img.shields.io/pypi/pyversions/dvc
   :target: https://pypi.org/project/dvc
   :alt: Python Version

.. |Coverage| image:: https://codecov.io/gh/iterative/dvc/branch/main/graph/badge.svg
   :target: https://codecov.io/gh/iterative/dvc
   :alt: Codecov

.. |Snap| image:: https://img.shields.io/badge/snap-install-82BEA0.svg?logo=snapcraft
   :target: https://snapcraft.io/dvc
   :alt: Snapcraft

.. |Choco| image:: https://img.shields.io/chocolatey/v/dvc?label=choco
   :target: https://chocolatey.org/packages/dvc
   :alt: Chocolatey

.. |Brew| image:: https://img.shields.io/homebrew/v/dvc?label=brew
   :target: https://formulae.brew.sh/formula/dvc
   :alt: Homebrew

.. |Conda| image:: https://anaconda.org/conda-forge/dvc/badges/version.svg
   :target: https://anaconda.org/conda-forge/dvc
   :alt: Conda-forge

.. |PyPI| image:: https://img.shields.io/pypi/v/dvc.svg?label=pip&logo=PyPI&logoColor=white
   :target: https://pypi.org/project/dvc
   :alt: PyPI

.. |PyPI Downloads| image:: https://img.shields.io/pypi/dm/dvc.svg?color=blue&label=Downloads&logo=pypi&logoColor=gold
   :target: https://pypi.org/project/dvc
   :alt: PyPI Downloads

.. |Packages| image:: https://img.shields.io/badge/deb|pkg|rpm|exe-blue
   :target: https://dvc.org/doc/install
   :alt: deb|pkg|rpm|exe

.. |DOI| image:: https://img.shields.io/badge/DOI-10.5281/zenodo.3677553-blue.svg
   :target: https://doi.org/10.5281/zenodo.3677553
   :alt: DOI

.. |Flowchart| image:: https://dvc.org/img/flow.gif
   :target: https://dvc.org/img/flow.gif
   :alt: how_dvc_works

.. |Contribs| image:: https://contrib.rocks/image?repo=iterative/dvc
   :target: https://github.com/iterative/dvc/graphs/contributors
   :alt: Contributors

.. |VS Code| image:: https://img.shields.io/visual-studio-marketplace/v/Iterative.dvc?color=blue&label=VSCode&logo=visualstudiocode&logoColor=blue
   :target: https://marketplace.visualstudio.com/items?itemName=Iterative.dvc
   :alt: VS Code Extension

Owner

  • Name: Iterative
  • Login: iterative
  • Kind: organization
  • Location: United States of America

Data Tools for AI and ML

Citation (CITATION.cff)

cff-version: 1.2.0
title: 'DVC: Data Version Control - Git for Data & Models"'
message: >-
  If you use this software as part of a publication and wish
  to cite it, please use the metadata from this file.
type: software
authors:
  - name: The DVC team and contributors
    website: 'https://github.com/iterative'
repository-code: 'https://github.com/iterative/dvc'
url: 'https://dvc.org'
abstract: >-
  DVC is a tool for data science that takes advantage of existing software engineering toolset.
  It helps machine learning teams manage large datasets, make projects reproducible, and collaborate better.
keywords:
  - ai
  - collaboration
  - data-science
  - data-version-control
  - developer-tools
  - git
  - machine-learning
  - python
  - reproducibility
license: Apache-2.0

Committers

Last synced: 7 months ago

All Time
  • Total Commits: 8,126
  • Total Committers: 310
  • Avg Commits per committer: 26.213
  • Development Distribution Score (DDS): 0.655
Past Year
  • Commits: 131
  • Committers: 20
  • Avg Commits per committer: 6.55
  • Development Distribution Score (DDS): 0.664
Top Committers
Name Email Commits
Ruslan Kuprieiev k****r@g****m 2,803
Saugat Pachhai s****i@o****m 1,063
Peter Rowlands p****r@p****m 507
Dmitry Petrov d****v@n****m 369
Mr. Outis m****s@p****m 368
Paweł Redzyński p****i@g****m 363
dependabot[bot] 4****] 332
Casper da Costa-Luis c****l@p****g 267
David de la Iglesia Castro d****o@g****m 195
Alexander Schepanovski s****b@g****m 184
Ivan Shcheklein s****n@g****m 144
karajan1001 m****1@g****m 138
dberenbaum d****e@i****i 130
Batuhan Taskaya b****a@g****m 116
pre-commit-ci[bot] 6****] 102
Jorge Orpinel j****e@o****m 99
Fábio Santos f****t@g****m 56
Daniele Trifirò d****e@i****i 46
Ronan Lamy r****y@g****m 38
Aman Sharma m****0@g****m 37
n3hrox n****x@g****m 33
Zhanibek j****v@g****m 25
Dani Hodovic d****c@g****m 24
nik123 k****a@g****m 23
Andrew Grigorev a****w@e****u 20
Nabanita Dash d****a@g****m 17
George Vyshnya g****a@g****m 17
Dave Berenbaum d****m@g****m 17
Earl Hathaway g****b@e****m 16
Tymoteusz Jankowski t****i@g****m 14
and 280 more...

Issues and Pull Requests

Last synced: 4 months ago

All Time
  • Total issues: 1,053
  • Total pull requests: 905
  • Average time to close issues: over 1 year
  • Average time to close pull requests: 7 days
  • Total issue authors: 501
  • Total pull request authors: 68
  • Average comments per issue: 5.07
  • Average comments per pull request: 1.59
  • Merged pull requests: 727
  • Bot issues: 0
  • Bot pull requests: 233
Past Year
  • Issues: 129
  • Pull requests: 212
  • Average time to close issues: 11 days
  • Average time to close pull requests: 4 days
  • Issue authors: 107
  • Pull request authors: 25
  • Average comments per issue: 1.73
  • Average comments per pull request: 0.6
  • Merged pull requests: 174
  • Bot issues: 0
  • Bot pull requests: 96
Top Authors
Issue Authors
  • dberenbaum (119)
  • skshetry (59)
  • jorgeorpinel (34)
  • efiop (31)
  • shcheklein (27)
  • daavoo (26)
  • pared (16)
  • johnyaku (15)
  • dmpetrov (14)
  • casperdcl (10)
  • aschuh-hf (10)
  • Suor (9)
  • tibor-mach (8)
  • aguschin (8)
  • pmrowla (7)
Pull Request Authors
  • skshetry (265)
  • pre-commit-ci[bot] (120)
  • efiop (119)
  • dependabot[bot] (110)
  • dberenbaum (77)
  • shcheklein (27)
  • pmrowla (26)
  • daavoo (23)
  • mattseddon (20)
  • AlexandreKempf (8)
  • rmic (6)
  • sisp (6)
  • mjasion (4)
  • hqdncw (4)
  • BradyJ27 (4)
Top Labels
Issue Labels
p2-medium (207) bug (202) feature request (197) p3-nice-to-have (168) A: experiments (109) ui (106) A: data-sync (88) awaiting response (82) enhancement (81) p1-important (73) research (54) performance (48) discussion (47) A: data-management (45) A: pipelines (37) A: cli (32) A: status (32) A: plots (32) triage (30) git (23) A: api (22) diff/show (21) product: VSCode (20) p0-critical (19) A: templating (19) regression (18) question (18) P: windows (18) help wanted (17) A: gc (16)
Pull Request Labels
maintenance (117) skip-changelog (66) bugfix (45) enhancement (31) A: experiments (20) feature (19) ui (19) dependencies (18) bug (16) breaking-change (13) A: data-management (13) testing (12) performance (9) A: plots (8) A: cli (7) A: params (5) refactoring (5) status: stale (5) product: Studio (5) A: status (4) A: metrics (4) A: data-sync (4) A: pipelines (4) A: artifacts (3) backport (3) regression (2) awaiting response (2) A: cloud-versioning (2) p0-critical (2) blocked (2)

Packages

  • Total packages: 20
  • Total downloads:
    • pypi 941,815 last-month
  • Total docker downloads: 4,893
  • Total dependent packages: 108
    (may contain duplicates)
  • Total dependent repositories: 1,426
    (may contain duplicates)
  • Total versions: 1,353
  • Total maintainers: 2
pypi.org: dvc

Git for data scientists - manage your code and data together

  • Documentation: https://dvc.org/doc
  • License: apache-2.0
  • Latest release: 3.63.0
    published 4 months ago
  • Versions: 547
  • Dependent Packages: 67
  • Dependent Repositories: 1,379
  • Downloads: 941,815 Last month
  • Docker Downloads: 4,893
Rankings
Stargazers count: 0.2%
Dependent repos count: 0.3%
Dependent packages count: 0.3%
Downloads: 0.4%
Average: 0.6%
Forks count: 1.2%
Docker downloads count: 1.4%
Maintainers (2)
Last synced: 4 months ago
conda-forge.org: dvc

Data Version Control or DVC is an open-source tool for data science and machine learning projects.

  • Homepage: https://dvc.org/
  • License: Apache-2.0
  • Latest release: 2.34.2
    published about 3 years ago
  • Versions: 212
  • Dependent Packages: 10
  • Dependent Repositories: 26
Rankings
Stargazers count: 2.6%
Forks count: 4.7%
Average: 5.1%
Dependent packages count: 5.9%
Dependent repos count: 7.2%
Last synced: 4 months ago
conda-forge.org: dvc-base

Data Version Control or DVC is an open-source tool for data science and machine learning projects.

  • Homepage: https://dvc.org/
  • License: Apache-2.0
  • Latest release: 1.11.16
    published almost 5 years ago
  • Versions: 20
  • Dependent Packages: 9
  • Dependent Repositories: 1
Rankings
Stargazers count: 2.6%
Forks count: 4.6%
Dependent packages count: 6.4%
Average: 9.4%
Dependent repos count: 24.1%
Last synced: 4 months ago
conda-forge.org: dvc-s3

Data Version Control or DVC is an open-source tool for data science and machine learning projects.

  • Versions: 70
  • Dependent Packages: 1
  • Dependent Repositories: 12
Rankings
Stargazers count: 2.6%
Forks count: 4.7%
Dependent repos count: 10.2%
Average: 11.6%
Dependent packages count: 29.0%
Last synced: 4 months ago
conda-forge.org: _dvc

Data Version Control or DVC is an open-source tool for data science and machine learning projects.

  • Homepage: https://dvc.org/
  • License: Apache-2.0
  • Latest release: 1.9.0
    published about 5 years ago
  • Versions: 1
  • Dependent Packages: 8
  • Dependent Repositories: 0
Rankings
Stargazers count: 2.5%
Forks count: 4.4%
Dependent packages count: 7.1%
Average: 12.0%
Dependent repos count: 34.0%
Last synced: 4 months ago
conda-forge.org: dvc-gdrive

Data Version Control or DVC is an open-source tool for data science and machine learning projects.

  • Versions: 67
  • Dependent Packages: 1
  • Dependent Repositories: 2
Rankings
Stargazers count: 2.6%
Forks count: 4.7%
Average: 14.1%
Dependent repos count: 20.2%
Dependent packages count: 29.0%
Last synced: 4 months ago
conda-forge.org: dvc-hdfs

Data Version Control or DVC is an open-source tool for data science and machine learning projects.

  • Versions: 67
  • Dependent Packages: 1
  • Dependent Repositories: 1
Rankings
Stargazers count: 2.6%
Forks count: 4.6%
Average: 15.1%
Dependent repos count: 24.1%
Dependent packages count: 28.9%
Last synced: 5 months ago
conda-forge.org: dvc-oss

Data Version Control or DVC is an open-source tool for data science and machine learning projects.

  • Versions: 67
  • Dependent Packages: 1
  • Dependent Repositories: 1
Rankings
Stargazers count: 2.6%
Forks count: 4.7%
Average: 15.2%
Dependent repos count: 24.4%
Dependent packages count: 29.0%
Last synced: 5 months ago
conda-forge.org: dvc-azure

Data Version Control or DVC is an open-source tool for data science and machine learning projects.

  • Versions: 71
  • Dependent Packages: 1
  • Dependent Repositories: 1
Rankings
Stargazers count: 2.6%
Forks count: 4.7%
Average: 15.2%
Dependent repos count: 24.4%
Dependent packages count: 29.0%
Last synced: 4 months ago
conda-forge.org: dvc-gs

Data Version Control or DVC is an open-source tool for data science and machine learning projects.

  • Versions: 69
  • Dependent Packages: 1
  • Dependent Repositories: 1
Rankings
Stargazers count: 2.6%
Forks count: 4.7%
Average: 15.2%
Dependent repos count: 24.4%
Dependent packages count: 29.0%
Last synced: 4 months ago
conda-forge.org: dvc-ssh

Data Version Control or DVC is an open-source tool for data science and machine learning projects.

  • Versions: 67
  • Dependent Packages: 1
  • Dependent Repositories: 1
Rankings
Stargazers count: 2.6%
Forks count: 4.7%
Average: 15.2%
Dependent repos count: 24.4%
Dependent packages count: 29.0%
Last synced: 5 months ago
conda-forge.org: _dvc-oss

Data Version Control or DVC is an open-source tool for data science and machine learning projects.

  • Homepage: https://dvc.org/
  • License: Apache-2.0
  • Latest release: 1.9.0
    published about 5 years ago
  • Versions: 1
  • Dependent Packages: 1
  • Dependent Repositories: 0
Rankings
Stargazers count: 2.5%
Forks count: 4.4%
Average: 17.4%
Dependent packages count: 28.8%
Dependent repos count: 34.0%
Last synced: 4 months ago
conda-forge.org: _dvc-gdrive

Data Version Control or DVC is an open-source tool for data science and machine learning projects.

  • Homepage: https://dvc.org/
  • License: Apache-2.0
  • Latest release: 1.9.0
    published about 5 years ago
  • Versions: 1
  • Dependent Packages: 1
  • Dependent Repositories: 0
Rankings
Stargazers count: 2.5%
Forks count: 4.4%
Average: 17.4%
Dependent packages count: 28.8%
Dependent repos count: 34.0%
Last synced: 4 months ago
conda-forge.org: _dvc-ssh

Data Version Control or DVC is an open-source tool for data science and machine learning projects.

  • Homepage: https://dvc.org/
  • License: Apache-2.0
  • Latest release: 1.9.0
    published about 5 years ago
  • Versions: 1
  • Dependent Packages: 1
  • Dependent Repositories: 0
Rankings
Stargazers count: 2.5%
Forks count: 4.4%
Average: 17.4%
Dependent packages count: 28.8%
Dependent repos count: 34.0%
Last synced: 4 months ago
conda-forge.org: _dvc-gs

Data Version Control or DVC is an open-source tool for data science and machine learning projects.

  • Homepage: https://dvc.org/
  • License: Apache-2.0
  • Latest release: 1.9.0
    published about 5 years ago
  • Versions: 1
  • Dependent Packages: 1
  • Dependent Repositories: 0
Rankings
Stargazers count: 2.5%
Forks count: 4.4%
Average: 17.4%
Dependent packages count: 28.8%
Dependent repos count: 34.0%
Last synced: 4 months ago
conda-forge.org: _dvc-azure

Data Version Control or DVC is an open-source tool for data science and machine learning projects.

  • Homepage: https://dvc.org/
  • License: Apache-2.0
  • Latest release: 1.9.0
    published about 5 years ago
  • Versions: 1
  • Dependent Packages: 1
  • Dependent Repositories: 0
Rankings
Stargazers count: 2.5%
Forks count: 4.4%
Average: 17.4%
Dependent packages count: 28.8%
Dependent repos count: 34.0%
Last synced: 4 months ago
conda-forge.org: _dvc-s3

Data Version Control or DVC is an open-source tool for data science and machine learning projects.

  • Homepage: https://dvc.org/
  • License: Apache-2.0
  • Latest release: 1.9.0
    published about 5 years ago
  • Versions: 1
  • Dependent Packages: 1
  • Dependent Repositories: 0
Rankings
Stargazers count: 2.5%
Forks count: 4.4%
Average: 17.4%
Dependent packages count: 28.8%
Dependent repos count: 34.0%
Last synced: 4 months ago
conda-forge.org: _dvc-hdfs

Data Version Control or DVC is an open-source tool for data science and machine learning projects.

  • Homepage: https://dvc.org/
  • License: Apache-2.0
  • Latest release: 1.9.0
    published about 5 years ago
  • Versions: 1
  • Dependent Packages: 1
  • Dependent Repositories: 0
Rankings
Stargazers count: 2.6%
Forks count: 4.5%
Average: 17.5%
Dependent packages count: 28.8%
Dependent repos count: 34.0%
Last synced: 4 months ago
conda-forge.org: dvc-webhdfs

Data Version Control or DVC is an open-source tool for data science and machine learning projects.

  • Versions: 64
  • Dependent Packages: 0
  • Dependent Repositories: 1
Rankings
Stargazers count: 2.6%
Forks count: 4.7%
Average: 20.8%
Dependent repos count: 24.4%
Dependent packages count: 51.6%
Last synced: 4 months ago
conda-forge.org: dvc-webdav

Data Version Control or DVC is an open-source tool for data science and machine learning projects.

  • Versions: 24
  • Dependent Packages: 0
  • Dependent Repositories: 0
Rankings
Stargazers count: 2.5%
Forks count: 4.4%
Average: 23.0%
Dependent repos count: 34.0%
Dependent packages count: 51.2%
Last synced: 4 months ago

Dependencies

.github/workflows/benchmarks.yaml actions
  • actions/setup-python v4 composite
  • iterative/dvc-bench main composite
.github/workflows/build.yaml actions
  • actions/checkout v4 composite
  • actions/download-artifact v3 composite
  • actions/setup-python v4 composite
  • actions/upload-artifact v3 composite
  • pypa/gh-action-pypi-publish release/v1 composite
.github/workflows/codeql.yml actions
  • actions/checkout v4 composite
  • github/codeql-action/analyze v2 composite
  • github/codeql-action/init v2 composite
.github/workflows/plugin_tests.yaml actions
  • actions/checkout v4 composite
  • actions/setup-python v4 composite
.github/workflows/tests.yaml actions
  • actions/checkout v4 composite
  • actions/setup-python v4 composite
  • codecov/codecov-action v3 composite
  • pre-commit/action v3.0.0 composite
  • re-actors/alls-green release/v1 composite
  • rtCamp/action-slack-notify v2.2.1 composite
tests/docker-compose.yml docker
  • ghcr.io/linuxserver/openssh-server latest
pyproject.toml pypi
  • colorama >=0.3.9
  • configobj >=5.0.6
  • distro >=1.3
  • dpath <3,>=2.1.0
  • dvc-data >=2.16.3,<2.17.0
  • dvc-http >=2.29.0
  • dvc-render >=0.3.1,<1
  • dvc-studio-client >=0.9.2,<1
  • dvc-task >=0.3.0,<1
  • flatten_dict <1,>=0.4.1
  • flufl.lock >=5,<8
  • funcy >=1.14
  • grandalf <1,>=0.7
  • hydra-core >=1.1
  • iterative-telemetry >=0.0.7
  • networkx >=2.5
  • packaging >=19
  • pathspec >=0.10.3
  • platformdirs <4,>=3.1.1
  • psutil >=5.8
  • pydot >=1.2.4
  • pygtrie >=2.3.2
  • pyparsing >=2.4.7
  • requests >=2.22
  • rich >=12
  • ruamel.yaml >=0.17.11
  • scmrepo >=1.2.1,<2
  • shortuuid >=0.5
  • shtab <2,>=1.3.4
  • tabulate >=0.8.7
  • tomlkit >=0.11.1
  • tqdm <5,>=4.63.1
  • voluptuous >=0.11.7
  • zc.lockfile >=1.2.1