Osprey
Osprey: Hyperparameter Optimization for Machine Learning - Published in JOSS (2016)
Science Score: 95.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
○CITATION.cff file
-
✓codemeta.json file
Found codemeta.json file -
✓.zenodo.json file
Found .zenodo.json file -
✓DOI references
Found 9 DOI reference(s) in README and JOSS metadata -
✓Academic publication links
Links to: joss.theoj.org -
✓Committers with academic emails
7 of 14 committers (50.0%) from academic institutions -
○Institutional organization owner
-
✓JOSS paper metadata
Published in Journal of Open Source Software
Keywords
Scientific Fields
Repository
🦅Hyperparameter optimization for machine learning pipelines 🦅
Basic Info
- Host: GitHub
- Owner: msmbuilder
- License: apache-2.0
- Language: Python
- Default Branch: master
- Homepage: http://msmbuilder.org/osprey
- Size: 974 KB
Statistics
- Stars: 73
- Watchers: 11
- Forks: 26
- Open Issues: 18
- Releases: 3
Topics
Metadata Files
README.md
Osprey
Osprey is an easy-to-use tool for hyperparameter optimization of machine learning algorithms in Python using scikit-learn (or using scikit-learn compatible APIs).
Each Osprey experiment combines an dataset, an estimator, a search space (and engine), cross validation and asynchronous serialization for distributed parallel optimization of model hyperparameters.
Documentation
For full documentation, please visit the Osprey homepage.
Installation
If you have an Anaconda Python distribution, installation is as easy as:
$ conda install -c omnia osprey
You can also install Osprey with pip:
$ pip install osprey
Alternatively, you can install directly from this GitHub repo:
$ git clone https://github.com/msmbuilder/osprey.git
$ cd osprey && git checkout 1.1.0
$ python setup.py install
Example using MSMBuilder
Below is an example of an osprey config file to cross validate Markov state
models based on varying the number of clusters and dihedral angles used in a
model:
```yaml
estimator:
evalscope: msmbuilder
eval: |
Pipeline([
('featurizer', DihedralFeaturizer(types=['phi', 'psi'])),
('cluster', MiniBatchKMeans()),
('msm', MarkovStateModel(ntimescales=5, verbose=False)),
])
searchspace: clusternclusters: min: 10 max: 100 type: int featurizer__types: choices: - ['phi', 'psi'] - ['phi', 'psi', 'chi1'] type: enum
cv: 5
dataset_loader: name: mdtraj params: trajectories: ~/local/msmbuilder/Tutorial/XTC//.xtc topology: ~/local/msmbuilder/Tutorial/native.pdb stride: 1
trials: uri: sqlite:///osprey-trials.db ```
Then run osprey worker. You can run multiple parallel instances
of osprey worker simultaneously on a cluster too.
``` $ osprey worker config.yaml
...
Beginning iteration 1 / 1
History contains: 0 trials Choosing next hyperparameters with random... {'clustern_clusters': 20, 'featurizertypes': ['phi', 'psi']}
Fitting 5 folds for each of 1 candidates, totalling 5 fits [Parallel(n_jobs=1)]: Done 1 jobs | elapsed: 0.3s
[Parallel(n_jobs=1)]: Done 5 out of 5 | elapsed: 1.8s finished
Success! Model score = 4.080646
(best score so far = 4.080646)
1/1 models fit successfully.
time: October 27, 2014 10:44 PM
elapsed: 4 seconds.
osprey worker exiting.
``
You can dump the database to JSON or CSV withosprey dump`.
Dependencies
python>=2.7.11six>=1.10.0pyyaml>=3.11numpy>=1.10.4scipy>=0.17.0scikit-learn>=0.17.0sqlalchemy>=1.0.10bokeh>=0.12.0matplotlib>=1.5.0pandas>=0.18.0GPy(optional, required forgpstrategy)hyperopt(optional, required forhyperopt_tpestrategy)nose(optional, for testing)
Contributing
In case you encounter any issues with this package, please consider submitting a ticket to the GitHub Issue Tracker. We also welcome any feature requests and highly encourage users to submit pull requests for bug fixes and improvements.
For more detailed information, please refer to our documentation.
Citing
If you use Osprey in your research, please cite:
bibtex
@misc{osprey,
author = {Robert T. McGibbon and
Carlos X. Hernández and
Matthew P. Harrigan and
Steven Kearnes and
Mohammad M. Sultan and
Stanislaw Jastrzebski and
Brooke E. Husic and
Vijay S. Pande},
title = {Osprey: Hyperparameter Optimization for Machine Learning},
month = sep,
year = 2016,
doi = {10.21105/joss.000341},
url = {http://dx.doi.org/10.21105/joss.00034}
}
Owner
- Name: MSMBuilder
- Login: msmbuilder
- Kind: organization
- Email: msmbuilder-user@lists.stanford.edu
- Website: http://msmbuilder.org
- Repositories: 12
- Profile: https://github.com/msmbuilder
Statistical models for biomolecular dynamics
JOSS Publication
Osprey: Hyperparameter Optimization for Machine Learning
Authors
Stanford University
Stanford University
Stanford University
Stanford University
Jagiellonian University
Stanford University
Stanford University
Tags
optimization cross-validation machine learningPapers & Mentions
Total mentions: 3
Visualization of protein interaction networks: problems and solutions
- DOI: 10.1186/1471-2105-14-S1-S1
- OpenAlex ID: https://openalex.org/W2016958746
- Published: January 2013
Novel, provable algorithms for efficient ensemble-based computational protein design and their application to the redesign of the c-Raf-RBD:KRas protein-protein interface
- DOI: 10.1371/journal.pcbi.1007447
- OpenAlex ID: https://openalex.org/W3033967289
- Published: June 2020
A critical analysis of computational protein design with sparse residue interaction graphs
- DOI: 10.1371/journal.pcbi.1005346
- OpenAlex ID: https://openalex.org/W2602328396
- Published: March 2017
GitHub Events
Total
Last Year
Committers
Last synced: 5 months ago
Top Committers
| Name | Commits | |
|---|---|---|
| Robert McGibbon | r****o@g****m | 169 |
| Carlos Hernandez | c****h@s****u | 126 |
| Robert Arbon | r****n@g****m | 48 |
| Carlos Hernández | c****z | 46 |
| Matthew Harrigan | h****n@s****u | 45 |
| skearnes | k****s@s****u | 33 |
| Unknown | r****n@b****k | 31 |
| Mohammad Muneeb Sultan | m****n@g****m | 21 |
| Steven Kearnes | s****s@g****m | 3 |
| Stanislw Jastrzebski | s****i@g****m | 2 |
| Joshua L. Adelman | j****n@g****m | 2 |
| Brooke Husic | b****c@s****u | 2 |
| Juan Eiros | j****4@i****k | 2 |
| bhusic@stanford.edu | b****c@s****u | 1 |
Committer Domains (Top 20 + Academic)
Issues and Pull Requests
Last synced: 4 months ago
All Time
- Total issues: 52
- Total pull requests: 48
- Average time to close issues: 4 months
- Average time to close pull requests: about 2 months
- Total issue authors: 11
- Total pull request authors: 6
- Average comments per issue: 2.13
- Average comments per pull request: 0.33
- Merged pull requests: 42
- Bot issues: 0
- Bot pull requests: 0
Past Year
- Issues: 0
- Pull requests: 0
- Average time to close issues: N/A
- Average time to close pull requests: N/A
- Issue authors: 0
- Pull request authors: 0
- Average comments per issue: 0
- Average comments per pull request: 0
- Merged pull requests: 0
- Bot issues: 0
- Bot pull requests: 0
Top Authors
Issue Authors
- cxhernandez (22)
- RobertArbon (7)
- synapticarbors (5)
- jeiros (5)
- brookehus (4)
- mpharrigan (4)
- msultan (1)
- orestxherija (1)
- rafwiewiora (1)
- rsatijaUT (1)
- nhstanley (1)
Pull Request Authors
- cxhernandez (31)
- RobertArbon (9)
- mpharrigan (5)
- synapticarbors (1)
- brookehus (1)
- jeiros (1)
Top Labels
Issue Labels
Pull Request Labels
Packages
- Total packages: 1
-
Total downloads:
- pypi 63 last-month
- Total dependent packages: 0
- Total dependent repositories: 2
- Total versions: 6
- Total maintainers: 2
pypi.org: osprey
|Build Status| |Coverage Status| |PyPi version| [|License|] (http://www.apache.org/licenses/LICENSE-2.0) |DOI| [|Documentation|] (http://msmbuilder.org/osprey)
- Homepage: https://github.com/msmbuilder/osprey
- Documentation: https://osprey.readthedocs.io/
- License: Apache Software License
-
Latest release: 1.1.0
published over 9 years ago
Rankings
Maintainers (2)
Dependencies
- numpydoc =0.7
- python *
- bokeh >=0.12.0
- matplotlib >=1.5.0
- numpy >=1.10.4
- pandas >=0.18.0
- pyyaml >=3.11
- scikit-learn >=0.17.0
- scipy >=0.17.0
- six >=1.10.0
- sqlalchemy >=1.0.10
