silero-vad

Silero VAD: pre-trained enterprise-grade Voice Activity Detector

https://github.com/snakers4/silero-vad

Science Score: 44.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
    Found CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
    Found .zenodo.json file
  • DOI references
  • Academic publication links
  • Committers with academic emails
  • Institutional organization owner
  • JOSS paper metadata
  • Scientific vocabulary similarity
    Low similarity (14.2%) to scientific vocabulary

Keywords

onnx onnx-runtime onnxruntime pytorch speech speech-processing vad voice-activity-detection voice-commands voice-control voice-detection voice-recognition

Keywords from Contributors

cryptocurrency transformer
Last synced: 6 months ago · JSON representation ·

Repository

Silero VAD: pre-trained enterprise-grade Voice Activity Detector

Basic Info
  • Host: GitHub
  • Owner: snakers4
  • License: mit
  • Language: Python
  • Default Branch: master
  • Homepage:
  • Size: 102 MB
Statistics
  • Stars: 6,633
  • Watchers: 58
  • Forks: 613
  • Open Issues: 21
  • Releases: 8
Topics
onnx onnx-runtime onnxruntime pytorch speech speech-processing vad voice-activity-detection voice-commands voice-control voice-detection voice-recognition
Created about 5 years ago · Last pushed 6 months ago
Metadata Files
Readme License Code of conduct Citation

README.md

Mailing list : test Mailing list : test License: CC BY-NC 4.0 downloads

Open In Colab Test Package

header


Silero VAD


Silero VAD - pre-trained enterprise-grade Voice Activity Detector (also see our STT models).


Real Time Example https://user-images.githubusercontent.com/36505480/144874384-95f80f6d-a4f1-42cc-9be7-004c891dd481.mp4 Please note, that video loads only if you are logged in your GitHub account.


Fast start


Dependencies System requirements to run python examples on `x86-64` systems: - `python 3.8+`; - 1G+ RAM; - A modern CPU with AVX, AVX2, AVX-512 or AMX instruction sets. Dependencies: - `torch>=1.12.0`; - `torchaudio>=0.12.0` (for I/O only); - `onnxruntime>=1.16.1` (for ONNX model usage). Silero VAD uses torchaudio library for audio I/O (`torchaudio.info`, `torchaudio.load`, and `torchaudio.save`), so a proper audio backend is required: - Option №1 - [**FFmpeg**](https://www.ffmpeg.org/) backend. `conda install -c conda-forge 'ffmpeg<7'`; - Option №2 - [**sox_io**](https://pypi.org/project/sox/) backend. `apt-get install sox`, TorchAudio is tested on libsox 14.4.2; - Option №3 - [**soundfile**](https://pypi.org/project/soundfile/) backend. `pip install soundfile`. If you are planning to run the VAD using solely the `onnx-runtime`, it will run on any other system architectures where onnx-runtume is [supported](https://onnxruntime.ai/getting-started). In this case please note that: - You will have to implement the I/O; - You will have to adapt the existing wrappers / examples / post-processing for your use-case.

Using pip: pip install silero-vad

python3 from silero_vad import load_silero_vad, read_audio, get_speech_timestamps model = load_silero_vad() wav = read_audio('path_to_audio_file') speech_timestamps = get_speech_timestamps( wav, model, return_seconds=True, # Return speech timestamps in seconds (default is samples) )

Using torch.hub: ```python3 import torch torch.setnumthreads(1)

model, utils = torch.hub.load(repoordir='snakers4/silero-vad', model='silerovad') (getspeechtimestamps, _, readaudio, _, _) = utils

wav = readaudio('pathtoaudiofile') speechtimestamps = getspeechtimestamps( wav, model, returnseconds=True, # Return speech timestamps in seconds (default is samples) ) ```


Key Features


  • Stellar accuracy

Silero VAD has excellent results on speech detection tasks.

  • Fast

One audio chunk (30+ ms) takes less than 1ms to be processed on a single CPU thread. Using batching or GPU can also improve performance considerably. Under certain conditions ONNX may even run up to 4-5x faster.

  • Lightweight

JIT model is around two megabytes in size.

  • General

Silero VAD was trained on huge corpora that include over 6000 languages and it performs well on audios from different domains with various background noise and quality levels.

  • Flexible sampling rate

Silero VAD supports 8000 Hz and 16000 Hz sampling rates.

  • Highly Portable

Silero VAD reaps benefits from the rich ecosystems built around PyTorch and ONNX running everywhere where these runtimes are available.

  • No Strings Attached

Published under permissive license (MIT) Silero VAD has zero strings attached - no telemetry, no keys, no registration, no built-in expiration, no keys or vendor lock.


Typical Use Cases


  • Voice activity detection for IOT / edge / mobile use cases
  • Data cleaning and preparation, voice detection in general
  • Telephony and call-center automation, voice bots
  • Voice interfaces


Links



Get In Touch


Try our models, create an issue, start a discussion, join our telegram chat, email us, read our news.

Please see our wiki for relevant information and email us directly.

Citations

@misc{Silero VAD, author = {Silero Team}, title = {Silero VAD: pre-trained enterprise-grade Voice Activity Detector (VAD), Number Detector and Language Classifier}, year = {2024}, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {\url{https://github.com/snakers4/silero-vad}}, commit = {insert_some_commit_here}, email = {hello@silero.ai} }


Examples and VAD-based Community Apps


  • Example of VAD ONNX Runtime model usage in C++

  • Voice activity detection for the browser using ONNX Runtime Web

  • Rust, Go, Java, C++, C# and other community examples

Owner

  • Name: Alexander Veysov
  • Login: snakers4
  • Kind: user

It is by will alone I set my mind in motion.

Citation (CITATION.cff)

cff-version: 1.2.0
message: "If you use this software, please cite it as below."
title: "Silero VAD"
authors:
  - family-names: "Silero Team"
    email: "hello@silero.ai"
type: software
repository-code: "https://github.com/snakers4/silero-vad"
license: MIT
abstract: "Pre-trained enterprise-grade Voice Activity Detector (VAD), Number Detector and Language Classifier"
preferred-citation:
  type: software
  authors:
    - family-names: "Silero Team"
      email: "hello@silero.ai"
  title: "Silero VAD: pre-trained enterprise-grade Voice Activity Detector (VAD), Number Detector and Language Classifier"
  year: 2024
  publisher: "GitHub"
  journal: "GitHub repository"
  howpublished: "https://github.com/snakers4/silero-vad"

Committers

Last synced: 9 months ago

All Time
  • Total Commits: 292
  • Total Committers: 40
  • Avg Commits per committer: 7.3
  • Development Distribution Score (DDS): 0.562
Past Year
  • Commits: 72
  • Committers: 17
  • Avg Commits per committer: 4.235
  • Development Distribution Score (DDS): 0.556
Top Committers
Name Email Commits
adamnsandle d****2@g****m 128
Alexander Veysov a****v@g****m 79
yuGAN6 7****6 8
gianpaolo bontempo b****x@h****t 7
Kai Karren m****l@k****e 7
Nathan Lee j****2@g****m 6
Ziyuan Wang z****k@g****m 6
sontref s****f@g****m 5
streamer45 c****1@g****m 3
bygreencn b****n@g****m 3
Yair Lifshitz y****r@l****o 3
Mohamed Bouaziz m****z@z****i 3
Antonio Bevilacqua b****y@g****m 2
EarningsCall 9****l 2
Gabriel Ziegler g****3@g****m 2
Ojuro Yokoyama o****a@g****m 2
Saenyakorn Siangsanoh s****i@g****m 2
Stefan Miletic s****c@g****m 2
Alexander Kalashnikov a****v@o****u 1
Abin Thomas a****e@g****m 1
きわみざむらい 2****i 1
yuguanqin y****n@f****m 1
rumbleFTW 0****h@g****m 1
qwbarch q****h@g****m 1
nick.ganju n****u@g****m 1
mhThomsen m****4@g****m 1
kh c****3@g****m 1
kafan1986 d****6@g****m 1
jiqiang.fu j****u@r****m 1
VvvvvGH c****p@g****m 1
and 10 more...

Issues and Pull Requests

Last synced: 6 months ago

All Time
  • Total issues: 184
  • Total pull requests: 84
  • Average time to close issues: about 1 month
  • Average time to close pull requests: 7 days
  • Total issue authors: 161
  • Total pull request authors: 42
  • Average comments per issue: 2.37
  • Average comments per pull request: 0.71
  • Merged pull requests: 76
  • Bot issues: 0
  • Bot pull requests: 0
Past Year
  • Issues: 58
  • Pull requests: 28
  • Average time to close issues: 5 days
  • Average time to close pull requests: 1 day
  • Issue authors: 54
  • Pull request authors: 12
  • Average comments per issue: 1.05
  • Average comments per pull request: 0.43
  • Merged pull requests: 26
  • Bot issues: 0
  • Bot pull requests: 0
Top Authors
Issue Authors
  • snakers4 (4)
  • NathanJHLee (4)
  • JJun-Guo (4)
  • Simon-chai (4)
  • jifashen (3)
  • EarningsCall (2)
  • wl-junlin (2)
  • TechInterMezzo (2)
  • mukundt (2)
  • zhuhao528 (2)
  • forthcoming (2)
  • eliran-fm (2)
  • hunzlausman (2)
  • jhdeov (2)
  • computervisionlearner (2)
Pull Request Authors
  • adamnsandle (49)
  • snakers4 (7)
  • streamer45 (5)
  • b3by (4)
  • yairl (2)
  • qwbarch (2)
  • akmitrich (2)
  • NathanJHLee (2)
  • gau-nernst (2)
  • bygreencn (2)
  • ZuoFuhong (2)
  • EarningsCall (2)
  • abinthomasonline (2)
  • Sontref (2)
  • sobomax (2)
Top Labels
Issue Labels
help wanted (107) bug (43) enhancement (23) v5 (6) documentation (1) examples (1)
Pull Request Labels

Packages

  • Total packages: 2
  • Total downloads:
    • pypi 319,765 last-month
  • Total dependent packages: 0
    (may contain duplicates)
  • Total dependent repositories: 0
    (may contain duplicates)
  • Total versions: 20
  • Total maintainers: 2
proxy.golang.org: github.com/snakers4/silero-vad
  • Versions: 2
  • Dependent Packages: 0
  • Dependent Repositories: 0
Rankings
Dependent packages count: 6.1%
Average: 6.3%
Dependent repos count: 6.5%
Last synced: 6 months ago
pypi.org: silero-vad

Voice Activity Detector (VAD) by Silero

  • Versions: 18
  • Dependent Packages: 0
  • Dependent Repositories: 0
  • Downloads: 319,765 Last month
Rankings
Dependent packages count: 9.5%
Average: 36.0%
Dependent repos count: 62.5%
Maintainers (2)
Last synced: 6 months ago