llama_ros
llama.cpp (GGUF LLMs) and llava.cpp (GGUF VLMs) for ROS 2
Science Score: 44.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
✓CITATION.cff file
Found CITATION.cff file -
✓codemeta.json file
Found codemeta.json file -
✓.zenodo.json file
Found .zenodo.json file -
○DOI references
-
○Academic publication links
-
○Committers with academic emails
-
○Institutional organization owner
-
○JOSS paper metadata
-
○Scientific vocabulary similarity
Low similarity (9.9%) to scientific vocabulary
Keywords
Repository
llama.cpp (GGUF LLMs) and llava.cpp (GGUF VLMs) for ROS 2
Basic Info
Statistics
- Stars: 223
- Watchers: 4
- Forks: 40
- Open Issues: 1
- Releases: 100
Topics
Metadata Files
README.md
llama_ros
This repository provides a set of ROS 2 packages to integrate llama.cpp into ROS 2. Using the llama_ros packages, you can easily incorporate the powerful optimization capabilities of llama.cpp into your ROS 2 projects by running GGUF-based LLMs and VLMs. You can also use features from llama.cpp such as GBNF grammars and modify LoRAs in real-time.
Table of Contents
Related Projects
- chatbot_ros → This chatbot, integrated into ROS 2, uses whisper_ros, to listen to people speech; and llama_ros, to generate responses. The chatbot is controlled by a state machine created with YASMIN.
- explainable_ros → A ROS 2 tool to explain the behavior of a robot. Using the integration of LangChain, logs are stored in a vector database. Then, RAG is applied to retrieve relevant logs for user questions answered with llama_ros.
Installation
To run llamaros with CUDA, first, you must install the CUDA Toolkit. Then, you can compile llamaros with --cmake-args -DGGML_CUDA=ON to enable CUDA support.
shell
cd ~/ros2_ws/src
git clone https://github.com/mgonzs13/llama_ros.git
pip3 install -r llama_ros/requirements.txt
cd ~/ros2_ws
rosdep install --from-paths src --ignore-src -r -y
colcon build --cmake-args -DGGML_CUDA=ON # add this for CUDA
Docker
Build the llamaros docker or download an image from DockerHub. You can choose to build llamaros with CUDA (USE_CUDA) and choose the CUDA version (CUDA_VERSION). Remember that you have to use DOCKER_BUILDKIT=0 to compile llama_ros with CUDA when building the image.
shell
DOCKER_BUILDKIT=0 docker build -t llama_ros --build-arg USE_CUDA=1 --build-arg CUDA_VERSION=12-6 .
Run the docker container. If you want to use CUDA, you have to install the NVIDIA Container Tollkit and add --gpus all.
shell
docker run -it --rm --gpus all llama_ros
Usage
llama_cli
Commands are included in llama_ros to speed up the test of GGUF-based LLMs within the ROS 2 ecosystem. This way, the following commands are integrating into the ROS 2 commands:
launch
Using this command launch a LLM from a YAML file. The configuration of the YAML is used to launch the LLM in the same way as using a regular launch file. Here is an example of how to use it:
shell
ros2 llama launch ~/ros2_ws/src/llama_ros/llama_bringup/models/StableLM-Zephyr.yaml
prompt
Using this command send a prompt to a launched LLM. The command uses a string, which is the prompt and has the following arguments:
- (
-r,--reset): Whether to reset the LLM before prompting - (
-t,--temp): The temperature value - (
--image-url): Image url to sent to a VLM
Here is an example of how to use it:
shell
ros2 llama prompt "Do you know ROS 2?" -t 0.0
Launch Files
First of all, you need to create a launch file to use llamaros or llavaros. This launch file will contain the main parameters to download the model from HuggingFace and configure it. Take a look at the following examples and the predefined launch files.
llama_ros (Python Launch)
Click to expand
```python from launch import LaunchDescription from llama_bringup.utils import create_llama_launch def generate_launch_description(): return LaunchDescription([ create_llama_launch( n_ctx=2048, # context of the LLM in tokens n_batch=8, # batch size in tokens n_gpu_layers=0, # layers to load in GPU n_threads=1, # threads n_predict=2048, # max tokens, -1 == inf model_repo="TheBloke/Marcoroni-7B-v3-GGUF", # Hugging Face repo model_filename="marcoroni-7b-v3.Q4_K_M.gguf", # model file in repo system_prompt_type="Alpaca" # system prompt type ) ]) ``` ```shell ros2 launch llama_bringup marcoroni.launch.py ```llama_ros (YAML Config)
Click to expand
```yaml n_ctx: 2048 # context of the LLM in tokens n_batch: 8 # batch size in tokens n_gpu_layers: 0 # layers to load in GPU n_threads: 1 # threads n_predict: 2048 # max tokens, -1 == inf model_repo: "cstr/Spaetzle-v60-7b-GGUF" # Hugging Face repo model_filename: "Spaetzle-v60-7b-q4-k-m.gguf" # model file in repo system_prompt_type: "Alpaca" # system prompt type ``` ```python import os from launch import LaunchDescription from llama_bringup.utils import create_llama_launch_from_yaml from ament_index_python.packages import get_package_share_directory def generate_launch_description(): return LaunchDescription([ create_llama_launch_from_yaml(os.path.join( get_package_share_directory("llama_bringup"), "models", "Spaetzle.yaml")) ]) ``` ```shell ros2 launch llama_bringup spaetzle.launch.py ```llama_ros (YAML Config + model shards)
Click to expand
```yaml n_ctx: 2048 # context of the LLM in tokens n_batch: 8 # batch size in tokens n_gpu_layers: 0 # layers to load in GPU n_threads: 1 # threads n_predict: 2048 # max tokens, -1 == inf model_repo: "Qwen/Qwen2.5-Coder-7B-Instruct-GGUF" # Hugging Face repo model_filename: "qwen2.5-coder-7b-instruct-q4_k_m-00001-of-00002.gguf" # model shard file in repo system_prompt_type: "ChatML" # system prompt type ``` ```shell ros2 llama launch Qwen2.yaml ```llava_ros (Python Launch)
Click to expand
```python from launch import LaunchDescription from llama_bringup.utils import create_llama_launch def generate_launch_description(): return LaunchDescription([ create_llama_launch( use_llava=True, # enable llava n_ctx=8192, # context of the LLM in tokens, use a huge context size to load images n_batch=512, # batch size in tokens n_gpu_layers=33, # layers to load in GPU n_threads=1, # threads n_predict=8192, # max tokens, -1 == inf model_repo="cjpais/llava-1.6-mistral-7b-gguf", # Hugging Face repo model_filename="llava-v1.6-mistral-7b.Q4_K_M.gguf", # model file in repo mmproj_repo="cjpais/llava-1.6-mistral-7b-gguf", # Hugging Face repo mmproj_filename="mmproj-model-f16.gguf", # mmproj file in repo system_prompt_type="Mistral" # system prompt type ) ]) ``` ```shell ros2 launch llama_bringup llava.launch.py ```llava_ros (YAML Config)
Click to expand
```yaml use_llava: True # enable llava n_ctx: 8192 # context of the LLM in tokens use a huge context size to load images n_batch: 512 # batch size in tokens n_gpu_layers: 33 # layers to load in GPU n_threads: 1 # threads n_predict: 8192 # max tokens -1 : : inf model_repo: "cjpais/llava-1.6-mistral-7b-gguf" # Hugging Face repo model_filename: "llava-v1.6-mistral-7b.Q4_K_M.gguf" # model file in repo mmproj_repo: "cjpais/llava-1.6-mistral-7b-gguf" # Hugging Face repo mmproj_filename: "mmproj-model-f16.gguf" # mmproj file in repo system_prompt_type: "mistral" # system prompt type ``` ```python def generate_launch_description(): return LaunchDescription([ create_llama_launch_from_yaml(os.path.join( get_package_share_directory("llama_bringup"), "models", "llava-1.6-mistral-7b-gguf.yaml")) ]) ``` ```shell ros2 launch llama_bringup llava.launch.py ```llava_ros (Audio)
Click to expand
```yaml use_llava: True n_ctx: 8192 n_batch: 512 n_gpu_layers: 29 n_threads: -1 n_predict: 8192 model_repo: "mradermacher/Qwen2-Audio-7B-Instruct-GGUF" model_filename: "Qwen2-Audio-7B-Instruct.Q4_K_M.gguf" mmproj_repo: "mradermacher/Qwen2-Audio-7B-Instruct-GGUF" mmproj_filename: "Qwen2-Audio-7B-Instruct.mmproj-f16.gguf" system_prompt_type: "ChatML" ``` ```python def generate_launch_description(): return LaunchDescription([ create_llama_launch_from_yaml(os.path.join( get_package_share_directory("llama_bringup"), "models", "Qwen2-Audio.yaml")) ]) ``` ```shell ros2 launch llama_bringup llava.launch.py ```LoRA Adapters
You can use LoRA adapters when launching LLMs. Using llama.cpp features, you can load multiple adapters choosing the scale to apply for each adapter. Here you have an example of using LoRA adapters with Phi-3. You can lis the
LoRAs using the /llama/list_loras service and modify their scales values by using the /llama/update_loras service. A scale value of 0.0 means not using that LoRA.
Click to expand
```yaml n_ctx: 2048 n_batch: 8 n_gpu_layers: 0 n_threads: 1 n_predict: 2048 model_repo: "bartowski/Phi-3.5-mini-instruct-GGUF" model_filename: "Phi-3.5-mini-instruct-Q4_K_M.gguf" lora_adapters: - repo: "zhhan/adapter-Phi-3-mini-4k-instruct_code_writing" filename: "Phi-3-mini-4k-instruct-adaptor-f16-code_writer.gguf" scale: 0.5 - repo: "zhhan/adapter-Phi-3-mini-4k-instruct_summarization" filename: "Phi-3-mini-4k-instruct-adaptor-f16-summarization.gguf" scale: 0.5 system_prompt_type: "Phi-3" ```ROS 2 Clients
Both llamaros and llavaros provide ROS 2 interfaces to access the main functionalities of the models. Here you have some examples of how to use them inside ROS 2 nodes. Moreover, take a look to the llamademonode.py and llavademonode.py demos.
Tokenize
Click to expand
```python from rclpy.node import Node from llama_msgs.srv import Tokenize class ExampleNode(Node): def __init__(self) -> None: super().__init__("example_node") # create the client self.srv_client = self.create_client(Tokenize, "/llama/tokenize") # create the request req = Tokenize.Request() req.text = "Example text" # call the tokenize service self.srv_client.wait_for_service() tokens = self.srv_client.call(req).tokens ```Detokenize
Click to expand
```python from rclpy.node import Node from llama_msgs.srv import Detokenize class ExampleNode(Node): def __init__(self) -> None: super().__init__("example_node") # create the client self.srv_client = self.create_client(Detokenize, "/llama/detokenize") # create the request req = Detokenize.Request() req.tokens = [123, 123] # call the tokenize service self.srv_client.wait_for_service() text = self.srv_client.call(req).text ```Embeddings
Click to expand
_Remember to launch llama_ros with embedding set to true to be able of generating embeddings with your LLM._ ```python from rclpy.node import Node from llama_msgs.srv import Embeddings class ExampleNode(Node): def __init__(self) -> None: super().__init__("example_node") # create the client self.srv_client = self.create_client(Embeddings, "/llama/generate_embeddings") # create the request req = Embeddings.Request() req.prompt = "Example text" req.normalize = True # call the embedding service self.srv_client.wait_for_service() embeddings = self.srv_client.call(req).embeddings ```Generate Response
Click to expand
```python import rclpy from rclpy.node import Node from rclpy.action import ActionClient from llama_msgs.action import GenerateResponse class ExampleNode(Node): def __init__(self) -> None: super().__init__("example_node") # create the client self.action_client = ActionClient( self, GenerateResponse, "/llama/generate_response") # create the goal and set the sampling config goal = GenerateResponse.Goal() goal.prompt = self.prompt goal.sampling_config.temp = 0.2 # wait for the server and send the goal self.action_client.wait_for_server() send_goal_future = self.action_client.send_goal_async( goal) # wait for the server rclpy.spin_until_future_complete(self, send_goal_future) get_result_future = send_goal_future.result().get_result_async() # wait again and take the result rclpy.spin_until_future_complete(self, get_result_future) result: GenerateResponse.Result = get_result_future.result().result ```Generate Response (llava)
Click to expand
```python import cv2 from cv_bridge import CvBridge import rclpy from rclpy.node import Node from rclpy.action import ActionClient from llama_msgs.action import GenerateResponse class ExampleNode(Node): def __init__(self) -> None: super().__init__("example_node") # create a cv bridge for the image self.cv_bridge = CvBridge() # create the client self.action_client = ActionClient( self, GenerateResponse, "/llama/generate_response") # create the goal and set the sampling config goal = GenerateResponse.Goal() goal.prompt = self.prompt goal.sampling_config.temp = 0.2 # add your image to the goal image = cv2.imread("/path/to/your/image", cv2.IMREAD_COLOR) goal.images.append(self.cv_bridge.cv2_to_imgmsg(image)) # wait for the server and send the goal self.action_client.wait_for_server() send_goal_future = self.action_client.send_goal_async( goal) # wait for the server rclpy.spin_until_future_complete(self, send_goal_future) get_result_future = send_goal_future.result().get_result_async() # wait again and take the result rclpy.spin_until_future_complete(self, get_result_future) result: GenerateResponse.Result = get_result_future.result().result ```LangChain
There is a llama_ros integration for LangChain. Thus, prompt engineering techniques could be applied. Here you have an example to use it.
llama_ros (Chain)
Click to expand
```python import rclpy from llama_ros.langchain import LlamaROS from langchain.prompts import PromptTemplate from langchain_core.output_parsers import StrOutputParser rclpy.init() # create the llama_ros llm for langchain llm = LlamaROS() # create a prompt template prompt_template = "tell me a joke about {topic}" prompt = PromptTemplate( input_variables=["topic"], template=prompt_template ) # create a chain with the llm and the prompt template chain = prompt | llm | StrOutputParser() # run the chain text = chain.invoke({"topic": "bears"}) print(text) rclpy.shutdown() ```llama_ros (Stream)
Click to expand
```python import rclpy from llama_ros.langchain import LlamaROS from langchain.prompts import PromptTemplate from langchain_core.output_parsers import StrOutputParser rclpy.init() # create the llama_ros llm for langchain llm = LlamaROS() # create a prompt template prompt_template = "tell me a joke about {topic}" prompt = PromptTemplate( input_variables=["topic"], template=prompt_template ) # create a chain with the llm and the prompt template chain = prompt | llm | StrOutputParser() # run the chain for c in chain.stream({"topic": "bears"}): print(c, flush=True, end="") rclpy.shutdown() ```llava_ros
Click to expand
```python import rclpy from llama_ros.langchain import LlamaROS rclpy.init() # create the llama_ros llm for langchain llm = LlamaROS() # bind the url_image image_url = "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg" llm = llm.bind(image_url=image_url).stream("Describe the image") # run the llm for c in llm: print(c, flush=True, end="") rclpy.shutdown() ```llamarosembeddings (RAG)
Click to expand
```python import rclpy from langchain_chroma import Chroma from llama_ros.langchain import LlamaROSEmbeddings rclpy.init() # create the llama_ros embeddings for langchain embeddings = LlamaROSEmbeddings() # create a vector database and assign it db = Chroma(embedding_function=embeddings) # create the retriever retriever = db.as_retriever(search_kwargs={"k": 5}) # add your texts db.add_texts(texts=["your_texts"]) # retrieve documents documents = retriever.invoke("your_query") print(documents) rclpy.shutdown() ```llama_ros (Renranker)
Click to expand
```python import rclpy from llama_ros.langchain import LlamaROSReranker from llama_ros.langchain import LlamaROSEmbeddings from langchain_community.vectorstores import FAISS from langchain_community.document_loaders import TextLoader from langchain_text_splitters import RecursiveCharacterTextSplitter from langchain.retrievers import ContextualCompressionRetriever rclpy.init() # load the documents documents = TextLoader("../state_of_the_union.txt",).load() text_splitter = RecursiveCharacterTextSplitter( chunk_size=500, chunk_overlap=100) texts = text_splitter.split_documents(documents) # create the llama_ros embeddings embeddings = LlamaROSEmbeddings() # create the VD and the retriever retriever = FAISS.from_documents( texts, embeddings).as_retriever(search_kwargs={"k": 20}) # create the compressor using the llama_ros reranker compressor = LlamaROSReranker() compression_retriever = ContextualCompressionRetriever( base_compressor=compressor, base_retriever=retriever ) # retrieve the documents compressed_docs = compression_retriever.invoke( "What did the president say about Ketanji Jackson Brown" ) for doc in compressed_docs: print("-" * 50) print(doc.page_content) print("\n") rclpy.shutdown() ```llama_ros (LLM + RAG + Reranker)
Click to expand
```python import bs4 import rclpy from langchain_chroma import Chroma from langchain_community.document_loaders import WebBaseLoader from langchain_core.output_parsers import StrOutputParser from langchain_core.runnables import RunnablePassthrough from langchain_core.messages import SystemMessage from langchain_core.prompts import ChatPromptTemplate, HumanMessagePromptTemplate from langchain_text_splitters import RecursiveCharacterTextSplitter from langchain.retrievers import ContextualCompressionRetriever from llama_ros.langchain import ChatLlamaROS, LlamaROSEmbeddings, LlamaROSReranker rclpy.init() # load, chunk and index the contents of the blog loader = WebBaseLoader( web_paths=("https://lilianweng.github.io/posts/2023-06-23-agent/",), bs_kwargs=dict( parse_only=bs4.SoupStrainer(class_=("post-content", "post-title", "post-header")) ), ) docs = loader.load() text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200) splits = text_splitter.split_documents(docs) vectorstore = Chroma.from_documents(documents=splits, embedding=LlamaROSEmbeddings()) # retrieve and generate using the relevant snippets of the blog retriever = vectorstore.as_retriever(search_kwargs={"k": 20}) # create prompt prompt = ChatPromptTemplate.from_messages( [ SystemMessage("You are an AI assistant that answer questions briefly."), HumanMessagePromptTemplate.from_template( "Taking into account the followin information:{context}\n\n{question}" ), ] ) # create rerank compression retriever compressor = LlamaROSReranker(top_n=3) compression_retriever = ContextualCompressionRetriever( base_compressor=compressor, base_retriever=retriever ) def format_docs(docs): formated_docs = "" for d in docs: formated_docs += f"\n\n\t- {d.page_content}" return formated_docs # create and use the chain rag_chain = ( {"context": compression_retriever | format_docs, "question": RunnablePassthrough()} | prompt | ChatLlamaROS(temp=0.0) | StrOutputParser() ) for c in rag_chain.stream("What is Task Decomposition?"): print(c, flush=True, end="") rclpy.shutdown() ```chatllamaros (Chat + VLM)
Click to expand
```python import rclpy from llama_ros.langchain import ChatLlamaROS from langchain_core.messages import SystemMessage from langchain_core.prompts import ChatPromptTemplate, HumanMessagePromptTemplate from langchain_core.output_parsers import StrOutputParser rclpy.init() # create chat chat = ChatLlamaROS( temp=0.2, penalty_last_n=8 ) # create prompt template with messages prompt = ChatPromptTemplate.from_messages([ SystemMessage("You are a IA that just answer with a single word."), HumanMessagePromptTemplate.from_template(template=[ {"type": "text", "text": "<__media__>Who is the character in the middle of the image?"}, {"type": "image_url", "image_url": "{image_url}"} ]) ]) # create the chain chain = prompt | chat | StrOutputParser() # stream and print the LLM output for text in chain.stream({"image_url": "https://pics.filmaffinity.com/Dragon_Ball_Bola_de_Dragaon_Serie_de_TV-973171538-large.jpg"}): print(text, end="", flush=True) print("", end="\n", flush=True) rclpy.shutdown() ```chatllamaros (Chat + Audio)
Click to expand
```python import sys import time import rclpy from langchain_core.messages import SystemMessage from langchain_core.prompts import ChatPromptTemplate, HumanMessagePromptTemplate from langchain_core.output_parsers import StrOutputParser from llama_ros.langchain import ChatLlamaROS def main(): if len(sys.argv) < 2: prompt = "What's that sound?" else: prompt = " ".join(sys.argv[1:]) tokens = 0 initial_time = -1 eval_time = -1 rclpy.init() chat = ChatLlamaROS(temp=0.0) prompt = ChatPromptTemplate.from_messages( [ SystemMessage("You are an IA that answer questions."), HumanMessagePromptTemplate.from_template( template=[ {"type": "text", "text": f"<__media__>{prompt}"}, {"type": "image_url", "image_url": "{audio_url}"}, ] ), ] ) chain = prompt | chat | StrOutputParser() initial_time = time.time() for text in chain.stream( { "audio_url": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2-Audio/audio/glass-breaking-151256.mp3" } ): tokens += 1 print(text, end="", flush=True) if eval_time < 0: eval_time = time.time() print("", end="\n", flush=True) end_time = time.time() print(f"Time to eval: {eval_time - initial_time} s") print(f"Prediction speed: {tokens / (end_time - eval_time)} t/s") rclpy.shutdown() if __name__ == "__main__": main() ```chatllamaros (Structured output)
Click to expand
```python import rclpy from langchain_core.messages import HumanMessage from llama_ros.langchain import ChatLlamaROS from pydantic import BaseModel, Field rclpy.init() class Joke(BaseModel): """Joke to tell user.""" setup: str = Field(description="The setup of the joke") punchline: str = Field(description="The punchline to the joke") rating: Optional[int] = Field( default=None, description="How funny the joke is, from 1 to 10" ) chat = ChatLlamaROS(temp=0.6, penalty_last_n=8) structured_chat = chat.with_structured_output( Joke, method="function_calling" ) prompt = ChatPromptTemplate.from_messages( [ HumanMessagePromptTemplate.from_template( template=[ {"type": "text", "text": "{prompt}"}, ] ), ] ) chain = prompt | structured_chat res = chain.invoke({"prompt": "Tell me a joke about cats"}) print(f"Response: {response.content.strip()}") rclpy.shutdown() ```chatllamaros (Tools)
Click to expand
The current implementation of Tools allows executing tools without requiring a model trained for that task. ```python from random import randint import rclpy from langchain.tools import tool from langchain_core.messages import HumanMessage from llama_ros.langchain import ChatLlamaROS rclpy.init() @tool def get_inhabitants(city: str) -> int: """Get the current temperature of a city""" return randint(4_000_000, 8_000_000) @tool def get_curr_temperature(city: str) -> int: """Get the current temperature of a city""" return randint(20, 30) chat = ChatLlamaROS(temp=0.6, penalty_last_n=8) messages = [ HumanMessage( "What is the current temperature in Madrid? And its inhabitants?" ) ] llm_tools = chat.bind_tools( [get_inhabitants, get_curr_temperature], tool_choice='any' ) all_tools_res = llm_tools.invoke(messages) messages.append(all_tools_res) for tool in all_tools_res.tool_calls: selected_tool = { "get_inhabitants": get_inhabitants, "get_curr_temperature": get_curr_temperature }[tool['name']] tool_msg = selected_tool.invoke(tool) formatted_output = f"{tool['name']}({''.join(tool['args'].values())}) = {tool_msg.content}" tool_msg.additional_kwargs = {'args': tool['args']} messages.append(tool_msg) res = llm_tools.invoke(messages) print(f"Response: {res.content}") rclpy.shutdown() ```chatllamaros (Reasoning)
Click to expand
A reasoning model is required, such as Deepseek R1 ```python import time from random import randint import rclpy from langchain_core.messages import HumanMessage from llama_ros.langchain import ChatLlamaROS rclpy.init() chat = ChatLlamaROS(temp=0.6, penalty_last_n=8) messages = [ HumanMessage( "Here we have a book, a laptop, 9 eggs and a nail. Please tell me how to stack them onto each other in a stable manner." ) ] res = chat.invoke(messages) print(f"Response: {res.content.strip()}") print(f"Reasoning: {res.additional_kwargs["reasoning_content"]}") rclpy.shutdown() ```chatllamaros (LangGraph)
Click to expand
```python import time from random import randint import rclpy from langchain.tools import tool from langchain_core.messages import HumanMessage from langgraph.prebuilt import create_react_agent from llama_ros.langchain import ChatLlamaROS rclpy.init() @tool def get_inhabitants(city: str) -> int: """Get the current temperature of a city""" return randint(4_000_000, 8_000_000) @tool def get_curr_temperature(city: str) -> int: """Get the current temperature of a city""" return randint(20, 30) chat = ChatLlamaROS(temp=0.0) agent_executor = create_react_agent( self.chat, [get_inhabitants, get_curr_temperature] ) response = self.agent_executor.invoke( { "messages": [ HumanMessage( content="What is the current temperature in Madrid? And its inhabitants?" ) ] } ) print(f"Response: {response['messages'][-1].content}") rclpy.shutdown() ```Demos
LLM Demo
shell
ros2 launch llama_bringup spaetzle.launch.py
shell
ros2 run llama_demos llama_demo_node
https://github.com/mgonzs13/llama_ros/assets/25979134/9311761b-d900-4e58-b9f8-11c8efefdac4
Embeddings Generation Demo
shell
ros2 llama launch ~/ros2_ws/src/llama_ros/llama_bringup/models/bge-base-en-v1.5.yaml
shell
ros2 run llama_demos llama_embeddings_demo_node
https://github.com/user-attachments/assets/7d722017-27dc-417c-ace7-bf6b747e4ced
Reranking Demo
shell
ros2 llama launch ~/ros2_ws/src/llama_ros/llama_bringup/models/jina-reranker.yaml
shell
ros2 run llama_demos llama_rerank_demo_node
https://github.com/user-attachments/assets/4b4adb4d-7c70-43ea-a2c1-9be57d211484
VLM Demo
shell
ros2 launch llama_bringup minicpm-2.6.launch.py
shell
ros2 run llama_demos llava_demo_node --ros-args -p prompt:="your prompt" -p image_url:="url of the image" -p use_image:="whether to send the image"
https://github.com/mgonzs13/llama_ros/assets/25979134/4a9ef92f-9099-41b4-8350-765336e3503c
Chat Template Demo
shell
ros2 llama launch MiniCPM-2.6.yaml
Click to expand MiniCPM-2.6.yaml
```yaml use_llava: True n_ctx: 8192 n_batch: 512 n_gpu_layers: 20 n_threads: -1 n_predict: 8192 model_repo: "openbmb/MiniCPM-V-2_6-gguf" model_filename: "ggml-model-Q4_K_M.gguf" mmproj_repo: "openbmb/MiniCPM-V-2_6-gguf" mmproj_filename: "mmproj-model-f16.gguf" ```shell
ros2 run llama_demos chatllama_demo_node
Chat Structed Output Demo
shell
ros2 llama launch Qwen2.yaml
shell
ros2 run llama_demos chatllama_structured_demo_node
Chat Tools Demo
shell
ros2 llama launch Qwen2.yaml
shell
ros2 run llama_demos chatllama_tools_demo_node
Chat Reasoning Demo (DeepSeek-R1)
shell
ros2 llama launch DeepSeek-R1.yaml
shell
ros2 run llama_demos chatllama_reasoning_demo_node
Langgraph Demo
shell
ros2 llama launch Qwen2.yaml
Click to expand Qwen2.yaml
```yaml _ctx: 4096 n_batch: 256 n_gpu_layers: 29 n_threads: -1 n_predict: -1 model_repo: "Qwen/Qwen2.5-Coder-7B-Instruct-GGUF" model_filename: "qwen2.5-coder-7b-instruct-q4_k_m-00001-of-00002.gguf" ```shell
ros2 run llama_demos chatllama_langgraph_demo_node
RAG Demo (LLM + chat template + RAG + Reranking + Stream)
shell
ros2 llama launch ~/ros2_ws/src/llama_ros/llama_bringup/models/bge-base-en-v1.5.yaml
shell
ros2 llama launch ~/ros2_ws/src/llama_ros/llama_bringup/models/jina-reranker.yaml
shell
ros2 llama launch Qwen2.yaml
Click to expand Qwen2.yaml
```yaml _ctx: 4096 n_batch: 256 n_gpu_layers: 29 n_threads: -1 n_predict: -1 model_repo: "Qwen/Qwen2.5-Coder-3B-Instruct-GGUF" model_filename: "qwen2.5-coder-3b-instruct-q4_k_m.gguf" stopping_words: ["<|im_end|>"] ```shell
ros2 run llama_demos llama_rag_demo_node
https://github.com/user-attachments/assets/b4e3957d-1f92-427b-a1a8-cfc76737c0d6
Owner
- Name: Miguel Ángel González Santamarta
- Login: mgonzs13
- Kind: user
- Location: León
- Company: University of León
- Twitter: miggsant
- Repositories: 2
- Profile: https://github.com/mgonzs13
Citation (CITATION.cff)
cff-version: 1.2.0
message: "If you use this software, please cite it as below."
authors:
- family-names: "González-Santamarta"
given-names: "Miguel Á."
title: "llama_ros"
date-released: 2023-04-03
url: "https://github.com/mgonzs13/llama_ros"
GitHub Events
Total
- Create event: 44
- Issues event: 6
- Release event: 32
- Watch event: 69
- Delete event: 20
- Issue comment event: 25
- Push event: 281
- Pull request review comment event: 1
- Pull request review event: 3
- Pull request event: 30
- Fork event: 11
Last Year
- Create event: 44
- Issues event: 6
- Release event: 32
- Watch event: 69
- Delete event: 20
- Issue comment event: 25
- Push event: 281
- Pull request review comment event: 1
- Pull request review event: 3
- Pull request event: 30
- Fork event: 11
Committers
Last synced: 6 months ago
Top Committers
| Name | Commits | |
|---|---|---|
| Miguel Ángel González Santamarta | m****s@u****s | 862 |
| Alejandro González | 5****4 | 11 |
| smellslikeml | s****l | 1 |
| b 0 r h | b****h | 1 |
| Zahi Kakish | z****h@g****m | 1 |
| Alberto Tudela | a****a@g****m | 1 |
Committer Domains (Top 20 + Academic)
Issues and Pull Requests
Last synced: 6 months ago
All Time
- Total issues: 9
- Total pull requests: 42
- Average time to close issues: 23 days
- Average time to close pull requests: 2 days
- Total issue authors: 8
- Total pull request authors: 6
- Average comments per issue: 1.0
- Average comments per pull request: 0.81
- Merged pull requests: 35
- Bot issues: 0
- Bot pull requests: 0
Past Year
- Issues: 5
- Pull requests: 30
- Average time to close issues: about 15 hours
- Average time to close pull requests: 3 days
- Issue authors: 5
- Pull request authors: 4
- Average comments per issue: 1.4
- Average comments per pull request: 1.07
- Merged pull requests: 25
- Bot issues: 0
- Bot pull requests: 0
Top Authors
Issue Authors
- kyle-redyeti (2)
- racket405 (1)
- walkhan (1)
- Harry-patter (1)
- shengyuwoo (1)
- semihc (1)
- tangyubbb (1)
- aidenyao (1)
Pull Request Authors
- agonzc34 (20)
- mgonzs13 (9)
- ajtudela (8)
- b0rh (2)
- smellslikeml (2)
- zmk5 (1)
Top Labels
Issue Labels
Pull Request Labels
Dependencies
- langchain ==0.0.295