pastis

Poisson-based algorithm for stable inference of DNA Structure

https://github.com/hiclib/pastis

Science Score: 44.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
    Found CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
    Found .zenodo.json file
  • DOI references
  • Academic publication links
  • Academic email domains
  • Institutional organization owner
  • JOSS paper metadata
  • Scientific vocabulary similarity
    Low similarity (8.5%) to scientific vocabulary
Last synced: 4 months ago · JSON representation ·

Repository

Poisson-based algorithm for stable inference of DNA Structure

Basic Info
Statistics
  • Stars: 39
  • Watchers: 7
  • Forks: 15
  • Open Issues: 27
  • Releases: 6
Created almost 12 years ago · Last pushed 5 months ago
Metadata Files
Readme License Citation

README.rst

PASTIS: Poisson-based Algorithm for STable Inference of DNA Structure
=====================================================================


Dependencies
------------

For Pastis:

- python (>= 2.7)
- numpy
- scipy
- scikit-learn
- pandas
- iced

Additional dependencies for new features (diploid inference
multiscale optimization, etc):
- python (>= 3.6)
- autograd (>= 1.3)

Most of these dependencies can be installed at once using conda:
`http://conda.pydata.org/miniconda.html `_

Once conda is installed, just type the following::

  conda install numpy scipy scikit-learn pandas

Or, to include the new features::

    conda install numpy scipy scikit-learn pandas autograd

`iced` can be installed via::

  pip install iced

Install PASTIS
--------------

This package uses distutils, which is the default way of installing
python modules.

To install in your home directory, use::

    python setup.py install --user

or using pip::

    pip install --user pastis

To install for all users on Unix/Linux::

    python setup.py build
    sudo python setup.py install

or using pip::

  pip install pastis

This will install a python package ``pastis``, and five programs:
``pastis-mds``, ``pastis-nmds``, ``pastis-pm1``, ``pastis-pm2``, and
``pastis-poisson``. Calling any of those five programs will display the help.

Owner

  • Name: hiclib
  • Login: hiclib
  • Kind: organization

Citation (CITATION)

To reference Pastis in publication, please cite the following:

@InProceedings{cauer:inferring,
  author =  {A. G. Cauer and G. Yardimci and J.-P. Vert and N. Varoquaux and W. S. Noble},
  title = {Inferring Diploid {3D} Chromatin Structures from {Hi-C} Data},
  booktitle = {19th International Workshop on Algorithms in Bioinformatics (WABI 2019)},
  pages = {11:1--11:13},
  series =  {Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =  {978-3-95977-123-8},
  ISSN =  {1868-8969},
  year =  {2019},
  volume =  {143},
  editor =  {Katharina T. Huber and Dan Gusfield},
  publisher = {Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
  address = {Dagstuhl, Germany},
  URL =   {http://drops.dagstuhl.de/opus/volltexte/2019/11041},
  URN =   {urn:nbn:de:0030-drops-110418},
  doi =   {10.4230/LIPIcs.WABI.2019.11},
  annote =  {Keywords: Genome 3D architecture, chromatin structure, Hi-C, 3D modeling}
}

@article{Varoquaux15062014,
  author = {Varoquaux, Nelle and Ay, Ferhat and Noble, William Stafford and
	    Vert, Jean-Philippe}, 
  title = {A statistical approach for inferring the 3D structure of the genome},
  volume = {30}, 
  number = {12}, 
  pages = {i26-i33}, 
  year = {2014}, 
  doi = {10.1093/bioinformatics/btu268}, 
  URL = {http://bioinformatics.oxfordjournals.org/content/30/12/i26.abstract}, 
  journal = {Bioinformatics} 
}

GitHub Events

Total
  • Issues event: 10
  • Watch event: 4
  • Issue comment event: 24
  • Push event: 68
  • Pull request event: 10
Last Year
  • Issues event: 10
  • Watch event: 4
  • Issue comment event: 24
  • Push event: 68
  • Pull request event: 10

Issues and Pull Requests

Last synced: 4 months ago

All Time
  • Total issues: 37
  • Total pull requests: 71
  • Average time to close issues: 3 months
  • Average time to close pull requests: 3 months
  • Total issue authors: 35
  • Total pull request authors: 4
  • Average comments per issue: 1.59
  • Average comments per pull request: 0.99
  • Merged pull requests: 49
  • Bot issues: 0
  • Bot pull requests: 0
Past Year
  • Issues: 7
  • Pull requests: 10
  • Average time to close issues: about 2 months
  • Average time to close pull requests: about 1 month
  • Issue authors: 5
  • Pull request authors: 1
  • Average comments per issue: 1.0
  • Average comments per pull request: 1.3
  • Merged pull requests: 7
  • Bot issues: 0
  • Bot pull requests: 0
Top Authors
Issue Authors
  • oganesson76 (3)
  • danextreme (1)
  • liufuyan2016 (1)
  • PengfeiInTuebingen (1)
  • hanshanmengqi (1)
  • shenlinyong (1)
  • aakashsur (1)
  • chenggonghan (1)
  • PACOYANG2019 (1)
  • jmsong2 (1)
  • DeltaMethod721 (1)
  • jmdeer (1)
  • fangzhen-li (1)
  • QianzhaoJ (1)
  • rysterzhu (1)
Pull Request Authors
  • NelleV (40)
  • gesinecauer (19)
  • mozesjacobs (11)
  • gbonora (1)
Top Labels
Issue Labels
Pull Request Labels

Dependencies

.binder/requirements.txt pypi
  • iced *
  • matplotlib *
  • numpy *
  • pandas *
  • scipy *
.github/workflows/build-html-and-deploy.yml actions
  • JamesIves/github-pages-deploy-action 3.7.1 composite
  • actions/checkout v4 composite
  • conda-incubator/setup-miniconda v3 composite
.github/workflows/test.yml actions
  • actions/checkout v4 composite
  • conda-incubator/setup-miniconda v3 composite
environment.yml conda
  • numpy
  • pip
  • python
  • setuptools >=77
pyproject.toml pypi
  • autograd *
  • iced *
  • numpy >=1.16.0
  • pandas *
  • scikit-learn *
  • scipy >=0.19.0
setup.py pypi