pymatgen

Python Materials Genomics (pymatgen) is a robust materials analysis code that defines classes for structures and molecules with support for many electronic structure codes. It powers the Materials Project.

https://github.com/materialsproject/pymatgen

Science Score: 49.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
    Found .zenodo.json file
  • DOI references
    Found 5 DOI reference(s) in README
  • Academic publication links
  • Committers with academic emails
    114 of 352 committers (32.4%) from academic institutions
  • Institutional organization owner
  • JOSS paper metadata
  • Scientific vocabulary similarity
    Low similarity (17.2%) to scientific vocabulary

Keywords

materials materials-informatics materials-science python science

Keywords from Contributors

computational-chemistry materials-discovery spectroscopy machine-learning-force-field chemistry optimade-specification optimade-api optimade physics optimade-python
Last synced: 6 months ago · JSON representation

Repository

Python Materials Genomics (pymatgen) is a robust materials analysis code that defines classes for structures and molecules with support for many electronic structure codes. It powers the Materials Project.

Basic Info
  • Host: GitHub
  • Owner: materialsproject
  • License: other
  • Language: Python
  • Default Branch: master
  • Homepage: https://pymatgen.org
  • Size: 1.03 GB
Statistics
  • Stars: 1,709
  • Watchers: 110
  • Forks: 917
  • Open Issues: 241
  • Releases: 311
Topics
materials materials-informatics materials-science python science
Created over 14 years ago · Last pushed 6 months ago
Metadata Files
Readme Contributing License Code of conduct Citation Codeowners Security

README.md

Logo

[![CI Status](https://github.com/materialsproject/pymatgen/actions/workflows/test.yml/badge.svg)](https://github.com/materialsproject/pymatgen/actions/workflows/test.yml) [![codecov](https://codecov.io/gh/materialsproject/pymatgen/branch/master/graph/badge.svg?token=XC47Un1LV2)](https://codecov.io/gh/materialsproject/pymatgen) [![PyPI Downloads](https://img.shields.io/pypi/dm/pymatgen?logo=pypi&logoColor=white&color=blue&label=PyPI)](https://pypi.org/project/pymatgen) [![Conda Downloads](https://img.shields.io/conda/dn/conda-forge/pymatgen?logo=condaforge&color=blue&label=Conda)](https://anaconda.org/conda-forge/pymatgen) [![Requires Python 3.10+](https://img.shields.io/badge/Python-3.10+-blue.svg?logo=python&logoColor=white)](https://python.org/downloads) [![Paper](https://img.shields.io/badge/J.ComMatSci-2012.10.028-blue?logo=elsevier&logoColor=white)](https://doi.org/10.1016/j.commatsci.2012.10.028)

Pymatgen (Python Materials Genomics) is a robust, open-source Python library for materials analysis. These are some of the main features:

  1. Highly flexible classes for the representation of Element, Site, Molecule and Structure objects.
  2. Extensive input/output support, including support for VASP, ABINIT, CIF, Gaussian, XYZ, and many other file formats.
  3. Powerful analysis tools, including generation of phase diagrams, Pourbaix diagrams, diffusion analyses, reactions, etc.
  4. Electronic structure analyses, such as density of states and band structure.
  5. Integration with the Materials Project REST API.

Pymatgen is free to use. However, we also welcome your help to improve this library by making your contributions. These contributions can be in the form of additional tools or modules you develop, or feature requests and bug reports. The following are resources for pymatgen:

Why use pymatgen?

  1. It is (fairly) robust. Pymatgen is used by thousands of researchers and is the analysis code powering the Materials Project. The analysis it produces survives rigorous scrutiny every single day. Bugs tend to be found and corrected quickly. Pymatgen also uses Github Actions for continuous integration, which ensures that every new code passes a comprehensive suite of unit tests.
  2. It is well documented. A fairly comprehensive documentation has been written to help you get to grips with it quickly.
  3. It is open. You are free to use and contribute to pymatgen. It also means that pymatgen is continuously being improved. We will attribute any code you contribute to any publication you specify. Contributing to pymatgen means your research becomes more visible, which translates to greater impact.
  4. It is fast. Many of the core numerical methods in pymatgen have been optimized by vectorizing in numpy/scipy. This means that coordinate manipulations are fast. Pymatgen also comes with a complete system for handling periodic boundary conditions.
  5. It will be around. Pymatgen is not a pet research project. It is used in the well-established Materials Project. It is also actively being developed and maintained by the Materials Virtual Lab, the ABINIT group and many other research groups.
  6. A growing ecosystem of developers and add-ons. Pymatgen has contributions from materials scientists all over the world. We also now have an architecture to support add-ons that expand pymatgen's functionality even further. Check out the contributing page and add-ons page for details and examples.

Installation

The version at the Python Package Index PyPI is always the latest stable release that is relatively bug-free and can be installed via pip:

sh pip install pymatgen

If you'd like to use the latest unreleased changes on the main branch, you can install directly from GitHub:

sh pip install -U git+https://github.com/materialsproject/pymatgen

Some extra functionality (e.g., generation of POTCARs) does require additional setup (see the pymatgen docs).

Change Log

See GitHub releases, docs/CHANGES.md or commit history in increasing order of details.

Using pymatgen

Please refer to the official pymatgen docs for tutorials and examples. Dr Anubhav Jain (@computron) has also created a series of tutorials and YouTube videos, which is a good resource, especially for beginners.

How to cite pymatgen

If you use pymatgen in your research, please consider citing the following work:

txt Shyue Ping Ong, William Davidson Richards, Anubhav Jain, Geoffroy Hautier, Michael Kocher, Shreyas Cholia, Dan Gunter, Vincent Chevrier, Kristin A. Persson, Gerbrand Ceder. Python Materials Genomics (pymatgen): A Robust, Open-Source Python Library for Materials Analysis. Computational Materials Science, 2013, 68, 314-319. doi:10.1016/j.commatsci.2012.10.028

In addition, some of pymatgen's functionality is based on scientific advances/principles developed by the computational materials scientists in our team. Please refer to the pymatgen docs on how to cite them.

License

Pymatgen is released under the MIT License. The terms of the license are as follows:

```txt The MIT License (MIT) Copyright (c) 2011-2012 MIT & LBNL

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ```

About the Pymatgen Development Team

Shyue Ping Ong (@shyuep) of the Materials Virtual Lab started Pymatgen in 2011 and is still the project lead. Janosh Riebesell (@janosh) and Matthew Horton (@mkhorton) are co-maintainers.

The pymatgen development team is the set of all contributors to the pymatgen project, including all subprojects.

Our Copyright Policy

Pymatgen uses a shared copyright model. Each contributor maintains copyright over their contributions to pymatgen. But, it is important to note that these contributions are typically only changes to the repositories. Thus, the pymatgen source code, in its entirety is not the copyright of any single person or institution. Instead, it is the collective copyright of the entire pymatgen Development Team. If individual contributors want to maintain a record of what changes/contributions they have specific copyright on, they should indicate their copyright in the commit message of the change, when they commit the change to one of the pymatgen repositories.

Owner

  • Name: Materials Project
  • Login: materialsproject
  • Kind: organization
  • Email: feedback@materialsproject.org
  • Location: 1 Cyclotron Rd, Berkeley CA 94720

Committers

Last synced: 10 months ago

All Time
  • Total Commits: 21,403
  • Total Committers: 352
  • Avg Commits per committer: 60.804
  • Development Distribution Score (DDS): 0.709
Past Year
  • Commits: 681
  • Committers: 61
  • Avg Commits per committer: 11.164
  • Development Distribution Score (DDS): 0.495
Top Committers
Name Email Commits
Shyue Ping Ong s****p@g****m 6,236
Shyue Ping Ong s****e@m****u 1,778
setten s****n@g****m 1,126
Janosh Riebesell j****l@g****m 1,011
gmatteo g****o@g****m 974
Matthew Horton m****n 681
Ryan Kingsbury R****y@l****v 551
William Richards w****s@g****m 477
samblau s****1@g****m 419
montoyjh m****h@g****m 374
Shyue Ping Ong sp@o****i 339
Anubhav Jain a****n@l****v 328
Xiaohui Qu x****u@l****v 298
JaGeo j****n@g****m 271
richardtran415 r****9@g****m 260
Danny Broberg d****g@b****u 253
Andrew a****3@g****m 248
shyamd s****d@l****v 241
Kiran Mathew k****w@l****v 219
Geoffroy Hautier g****r@u****e 193
Stephen Dacek s****k@m****u 193
Bharat K. Medasani m****r@g****m 179
William Richards w****d@m****u 167
nwinner n****r@b****u 163
Haoyu (Daniel) y****7@o****m 160
David Waroquiers d****s@u****e 159
JSX j****n@g****m 158
pre-commit-ci[bot] 6****] 144
Francesco Ricci f****i@g****m 130
Alex Ganose a****e@g****m 129
and 322 more...

Issues and Pull Requests

Last synced: 6 months ago

All Time
  • Total issues: 470
  • Total pull requests: 1,280
  • Average time to close issues: 11 months
  • Average time to close pull requests: 15 days
  • Total issue authors: 219
  • Total pull request authors: 126
  • Average comments per issue: 2.22
  • Average comments per pull request: 2.44
  • Merged pull requests: 1,016
  • Bot issues: 13
  • Bot pull requests: 79
Past Year
  • Issues: 151
  • Pull requests: 488
  • Average time to close issues: 11 days
  • Average time to close pull requests: 11 days
  • Issue authors: 73
  • Pull request authors: 60
  • Average comments per issue: 1.21
  • Average comments per pull request: 1.46
  • Merged pull requests: 386
  • Bot issues: 11
  • Bot pull requests: 34
Top Authors
Issue Authors
  • DanielYang59 (46)
  • Andrew-S-Rosen (27)
  • janosh (26)
  • hongyi-zhao (25)
  • github-actions[bot] (13)
  • kavanase (10)
  • fxcoudert (8)
  • CifLord (7)
  • kaueltzen (7)
  • rkingsbury (7)
  • JaGeo (6)
  • yantar92 (6)
  • shyuep (6)
  • fraricci (6)
  • jsukpark (6)
Pull Request Authors
  • DanielYang59 (349)
  • janosh (223)
  • dependabot[bot] (50)
  • kavanase (42)
  • benrich37 (41)
  • esoteric-ephemera (37)
  • Andrew-S-Rosen (36)
  • naik-aakash (31)
  • pre-commit-ci[bot] (29)
  • rkingsbury (25)
  • tpurcell90 (21)
  • JaGeo (21)
  • jmmshn (16)
  • mkhorton (15)
  • hongyi-zhao (13)
Top Labels
Issue Labels
bug (196) enhancement (36) io (29) vasp (15) feature request (11) help (8) needs repro (8) analysis (8) core (7) needs discussion (7) data viz (6) docs (6) discussion (5) stale (5) awaiting user (5) tests (5) UX (4) compatability (4) contributing (4) symmetry (4) good first issue (3) electronic structure (3) api (3) help wanted (3) install (3) question (3) duplicate (3) cif (2) linting (2) ux (2)
Pull Request Labels
fix (172) io (146) enhancement (113) vasp (87) tests (61) dependencies (57) housekeeping (54) linting (53) core (46) docs (46) types (44) qa (33) ux (30) api (26) breaking (26) ci (23) analysis (22) pkg (22) data viz (20) python (20) needs testing (20) phonon (19) ruby (18) ecosystem (17) lobster (17) UX (13) electronic structure (13) performance (12) dx (12) compatability (11)

Packages

  • Total packages: 2
  • Total downloads:
    • pypi 445,925 last-month
  • Total docker downloads: 90,604
  • Total dependent packages: 245
    (may contain duplicates)
  • Total dependent repositories: 491
    (may contain duplicates)
  • Total versions: 497
  • Total maintainers: 2
  • Total advisories: 2
pypi.org: pymatgen

Python Materials Genomics is a robust materials analysis code that defines core object representations for structures

  • Versions: 409
  • Dependent Packages: 198
  • Dependent Repositories: 458
  • Downloads: 445,925 Last month
  • Docker Downloads: 90,604
Rankings
Dependent packages count: 0.1%
Dependent repos count: 0.7%
Average: 0.7%
Downloads: 0.9%
Docker downloads count: 1.2%
Maintainers (2)
Last synced: 8 months ago
conda-forge.org: pymatgen

Python Materials Genomics is a robust materials analysis code that defines core object representations for structures and molecules with support for many electronic structure codes. It is currently the core analysis code powering the Materials Project (https://www.materialsproject.org).

  • Versions: 88
  • Dependent Packages: 47
  • Dependent Repositories: 33
Rankings
Dependent packages count: 1.5%
Forks count: 6.0%
Dependent repos count: 6.3%
Average: 6.5%
Stargazers count: 12.1%
Last synced: 6 months ago

Dependencies

.github/workflows/lint.yml actions
  • actions/checkout v4 composite
  • actions/setup-python v4 composite
.github/workflows/release.yml actions
  • actions/checkout v4 composite
  • actions/download-artifact v3 composite
  • actions/setup-python v4 composite
  • actions/upload-artifact v3 composite
  • codecov/codecov-action v3 composite
  • pypa/cibuildwheel v2.15.0 composite
  • pypa/gh-action-pypi-publish release/v1 composite
.github/workflows/test.yml actions
  • actions/checkout v4 composite
  • actions/setup-python v4 composite
docs/Gemfile rubygems
  • github-pages >= 0 development
  • jekyll-feed ~> 0.12 development
  • http_parser.rb ~> 0.6.0
  • minima ~> 2.5
  • tzinfo >= 1, < 3
  • tzinfo-data >= 0
  • wdm ~> 0.1.1
  • webrick ~> 1.8
docs/Gemfile.lock rubygems
  • activesupport 7.0.7.2
  • addressable 2.8.4
  • bundler 2.4.17
  • coffee-script 2.4.1
  • coffee-script-source 1.11.1
  • colorator 1.1.0
  • commonmarker 0.23.10
  • concurrent-ruby 1.2.2
  • dnsruby 1.70.0
  • em-websocket 0.5.3
  • ethon 0.16.0
  • eventmachine 1.2.7
  • execjs 2.8.1
  • faraday 2.7.10
  • faraday-net_http 3.0.2
  • ffi 1.15.5
  • forwardable-extended 2.6.0
  • gemoji 3.0.1
  • github-pages 228
  • github-pages-health-check 1.17.9
  • html-pipeline 2.14.3
  • http_parser.rb 0.8.0
  • i18n 1.14.1
  • jekyll 3.9.3
  • jekyll-avatar 0.7.0
  • jekyll-coffeescript 1.1.1
  • jekyll-commonmark 1.4.0
  • jekyll-commonmark-ghpages 0.4.0
  • jekyll-default-layout 0.1.4
  • jekyll-feed 0.15.1
  • jekyll-gist 1.5.0
  • jekyll-github-metadata 2.13.0
  • jekyll-include-cache 0.2.1
  • jekyll-mentions 1.6.0
  • jekyll-optional-front-matter 0.3.2
  • jekyll-paginate 1.1.0
  • jekyll-readme-index 0.3.0
  • jekyll-redirect-from 0.16.0
  • jekyll-relative-links 0.6.1
  • jekyll-remote-theme 0.4.3
  • jekyll-sass-converter 1.5.2
  • jekyll-seo-tag 2.8.0
  • jekyll-sitemap 1.4.0
  • jekyll-swiss 1.0.0
  • jekyll-theme-architect 0.2.0
  • jekyll-theme-cayman 0.2.0
  • jekyll-theme-dinky 0.2.0
  • jekyll-theme-hacker 0.2.0
  • jekyll-theme-leap-day 0.2.0
  • jekyll-theme-merlot 0.2.0
  • jekyll-theme-midnight 0.2.0
  • jekyll-theme-minimal 0.2.0
  • jekyll-theme-modernist 0.2.0
  • jekyll-theme-primer 0.6.0
  • jekyll-theme-slate 0.2.0
  • jekyll-theme-tactile 0.2.0
  • jekyll-theme-time-machine 0.2.0
  • jekyll-titles-from-headings 0.5.3
  • jekyll-watch 2.2.1
  • jemoji 0.12.0
  • kramdown 2.3.2
  • kramdown-parser-gfm 1.1.0
  • liquid 4.0.4
  • listen 3.8.0
  • mercenary 0.3.6
  • minima 2.5.1
  • minitest 5.19.0
  • nokogiri 1.15.3
  • octokit 4.25.1
  • pathutil 0.16.2
  • public_suffix 4.0.7
  • racc 1.6.2
  • rb-fsevent 0.11.2
  • rb-inotify 0.10.1
  • rexml 3.2.5
  • rouge 3.26.0
  • ruby2_keywords 0.0.5
  • rubyzip 2.3.2
  • safe_yaml 1.0.5
  • sass 3.7.4
  • sass-listen 4.0.0
  • sawyer 0.9.2
  • simpleidn 0.2.1
  • terminal-table 1.8.0
  • typhoeus 1.4.0
  • tzinfo 2.0.6
  • unf 0.1.4
  • unf_ext 0.0.8.2
  • unicode-display_width 1.8.0
  • webrick 1.8.1
pyproject.toml pypi
requirements.txt pypi
  • Cython ==3.0.2
  • beautifulsoup4 ==4.12.2
  • joblib ==1.3.2
  • matplotlib ==3.7.2
  • monty ==2023.9.25
  • networkx ==2.8.8
  • numpy ==1.25.2
  • palettable ==3.3.0
  • pandas ==2.0.3
  • plotly ==5.16.1
  • pybtex ==0.24.0
  • requests ==2.31.0
  • ruamel.yaml ==0.17.32
  • scipy ==1.11.2
  • spglib ==2.0.2
  • sympy ==1.11.1
  • tabulate ==0.9.0
  • tqdm ==4.66.1
  • uncertainties ==3.1.7
setup.py pypi
  • joblib *
  • matplotlib >=1.5
  • monty >=3.0.2
  • networkx >=2.2
  • numpy >=1.25.0
  • palettable >=3.1.1
  • pandas *
  • plotly >=4.5.0
  • pybtex *
  • requests *
  • ruamel.yaml >=0.17.0
  • scipy >=1.5.0
  • spglib >=2.0.2
  • sympy *
  • tabulate *
  • tqdm *
  • uncertainties >=3.1.4
.github/workflows/jekyll-gh-pages.yml actions
  • actions/checkout v4 composite
  • actions/configure-pages v3 composite
  • actions/deploy-pages v2 composite
  • actions/jekyll-build-pages v1 composite
  • actions/upload-pages-artifact v2 composite
.github/workflows/issue-metrics.yml actions
  • github/issue-metrics v3 composite
  • peter-evans/create-issue-from-file v5 composite
uv.lock pypi
  • 238 dependencies