quantumve

Vision Transformer embeddings enable scalable quantum SVMs with real-world accuracy gains.

https://github.com/sebasmos/quantumve

Science Score: 54.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
    Found CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
    Found .zenodo.json file
  • DOI references
  • Academic publication links
    Links to: arxiv.org
  • Academic email domains
  • Institutional organization owner
  • JOSS paper metadata
  • Scientific vocabulary similarity
    Low similarity (10.5%) to scientific vocabulary

Keywords

deep-learning machine-learning optimization-methods pytorch qiskit quantum
Last synced: 4 months ago · JSON representation ·

Repository

Vision Transformer embeddings enable scalable quantum SVMs with real-world accuracy gains.

Basic Info
  • Host: GitHub
  • Owner: sebasmos
  • License: other
  • Language: Jupyter Notebook
  • Default Branch: main
  • Homepage:
  • Size: 12.6 MB
Statistics
  • Stars: 3
  • Watchers: 2
  • Forks: 5
  • Open Issues: 0
  • Releases: 0
Topics
deep-learning machine-learning optimization-methods pytorch qiskit quantum
Created almost 5 years ago · Last pushed 4 months ago
Metadata Files
Readme License Citation

README.md

License: CC BY-NC-SA 4.0 Python Version arXiv

QuantumVE: Quantum-Transformer Advantage Boost Over Classical ML

Breaking Discovery: Vision Transformer embeddings unlock quantum machine learning advantage! First systematic proof that embedding choice determines quantum kernel success, revealing fundamental synergy between transformer attention and quantum feature spaces.

🎯 Breakthrough Results

  • 8.02% accuracy improvement on Fashion-MNIST vs classical SVMs
  • 4.42% boost on MNIST dataset
  • First evidence that ViT embeddings enable quantum advantage while CNN features show degradation
  • 16-qubit tensor network simulation via cuTensorNet proving scalability
  • Class-balanced k-means distillation for efficient quantum processing

Project Architecture

QuantumVE/ ├── data_processing/ # Class-balanced k-means distillation procedures ├── embeddings/ # Vision Transformer & CNN embedding extraction ├── qve/ # Core quantum-classical modules and utilities └── scripts/ # Experimental pipelines with cross-validation ├── classical_baseline.py # Traditional SVM benchmarks ├── cross_validation_baseline.py # Cross-validation framework └── qsvm_cuda_embeddings.py # Our embedding-aware quantum method

🚀 Quick Start

1. Environment Setup

```bash

Create conda environment

conda create -n QuantumVE python=3.11 -y conda activate QuantumVE

Clone and install

git clone https://github.com/sebasmos/QuantumVE.git cd QuantumVE pip install -e .

For Ryzen devices - Install MPI

conda install -c conda-forge mpi4py openmpi ```

2. Download Pre-computed Embeddings

MNIST Embeddings: bash mkdir -p data && \ wget https://huggingface.co/datasets/sebasmos/QuantumEmbeddings/resolve/main/mnist_embeddings.zip && \ unzip mnist_embeddings.zip -d data && \ rm mnist_embeddings.zip

Fashion-MNIST Embeddings: bash mkdir -p data && \ wget https://huggingface.co/datasets/sebasmos/QuantumEmbeddings/resolve/main/fashionmnist_embeddings.zip && \ unzip fashionmnist_embeddings.zip -d data && \ rm fashionmnist_embeddings.zip

3. Run Experiments

Single Node: ```bash

Classical baseline with cross-validation

python scripts/classical_baseline.py

Cross-validation framework

python scripts/crossvalidationbaseline.py

Our embedding-aware quantum method

python scripts/qsvmcudaembeddings.py ```

Multi-Node with MPI: ```bash

Run with 2 processes

mpirun -np 2 python scripts/qsvmcudaembeddings.py mpirun -np 2 python scripts/crossvalidationbaseline.py ```

🔬 What Makes This Work?

Our key insight: embedding choice is critical for quantum advantage. While CNN features degrade in quantum systems, Vision Transformer embeddings create a unique synergy with quantum feature spaces, enabling measurable performance gains through:

  1. Class-balanced distillation reduces quantum overhead while preserving critical patterns
  2. ViT attention mechanisms align naturally with quantum superposition states
  3. Tensor network simulation scales to practical problem sizes (16+ qubits)

🤝 Contributing

We welcome contributions! Help us advance quantum machine learning:

  1. Fork the QuantumVE repository
  2. Create your feature branch (git checkout -b feature/amazing-feature)
  3. Submit a pull request with detailed description

Areas for contribution: - New embedding architectures (BERT, CLIP, etc.) - Additional quantum backends - Performance optimizations - Documentation improvements

🙏 Acknowledgements

This work was supported by the Google Cloud Research Credits program under award number GCP19980904.

📄 License

CC BY-NC-SA 4.0

📚 Citation

Paper

bibtex @article{Cajas2024_QuantumVE, title={Embedding-Aware Quantum-Classical SVMs for Scalable Quantum Machine Learning}, author={Cajas Ordóñez, Sebastián Andrés and Torres Torres, Luis and Bifulco, Mario and Duran, Carlos and Bosch, Cristian and Simón Carbajo, Ricardo}, journal={arXiv preprint arXiv:2508.00024}, year={2024}, url={https://arxiv.org/abs/2508.00024} }


**🌟 Star us on GitHub if this helps your research! 🌟**

Owner

  • Name: Sebastian Cajas
  • Login: sebasmos
  • Kind: user
  • Location: Paris
  • Company: Université de Bordeaux - UdB

Citation (CITATION.cff)

# This CITATION.cff file was generated with cffinit.
# Visit https://bit.ly/cffinit to generate yours today!

cff-version: 1.3.0
title: >-
  QuantumVE
message: >-
  If you use this software, please cite it using the
  metadata from this file.
type: software
authors:
  - family-names: "Cajas Ordóñez"
    given-names: "Sebastián Andrés"
    alias: sebasmos
  - family-names: "Torres Torres"
    given-names: "Luis"
  - family-names: "Bifulco"
    given-names: "Mario"
  - family-names: "Duran"
    given-names: "Carlos"
  - family-names: "Bosch"
    given-names: "Cristian"
  - family-names: "Simón Carbajo"
    given-names: "Ricardo"
keywords:
  - qsvm
repository-code: 'https://github.com/sebasmos/QuantumVE'
license: CC BY-NC-SA 4.0
date-released: '2025-07-28'

GitHub Events

Total
  • Watch event: 4
  • Member event: 1
  • Push event: 23
  • Fork event: 2
  • Create event: 1
Last Year
  • Watch event: 4
  • Member event: 1
  • Push event: 23
  • Fork event: 2
  • Create event: 1