https://github.com/kul-optec/hyhound

Hyperbolic Householder transformations for Up- and Downdating Cholesky factorizations.

https://github.com/kul-optec/hyhound

Science Score: 49.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
    Found .zenodo.json file
  • DOI references
    Found 1 DOI reference(s) in README
  • Academic publication links
    Links to: arxiv.org
  • Committers with academic emails
  • Institutional organization owner
  • JOSS paper metadata
  • Scientific vocabulary similarity
    Low similarity (11.5%) to scientific vocabulary

Keywords

linear-algebra optimization optimization-algorithms
Last synced: 4 months ago · JSON representation

Repository

Hyperbolic Householder transformations for Up- and Downdating Cholesky factorizations.

Basic Info
  • Host: GitHub
  • Owner: kul-optec
  • License: lgpl-3.0
  • Language: C++
  • Default Branch: main
  • Homepage:
  • Size: 249 KB
Statistics
  • Stars: 3
  • Watchers: 6
  • Forks: 0
  • Open Issues: 0
  • Releases: 0
Topics
linear-algebra optimization optimization-algorithms
Created 11 months ago · Last pushed 5 months ago
Metadata Files
Readme License

README.md

arXiv Preprint CI: Linux

hyhound

Hyperbolic Householder transformations for Up- and Downdating Cholesky factorizations.

Purpose

Given a Cholesky factor $L$ of a dense matrix $H$, the hyhound::update_cholesky function computes the Cholesky factor $\tilde L$ of the matrix $\tilde H = \tilde L \tilde L^\top = H + A \Sigma A^\top$ (where $H,\tilde H\in\mathbb{R}^{n\times n}$ with $H \succ 0$ and $\tilde H \succ 0$, $A \in \mathbb{R}^{n\times m}$, $\Sigma \in \mathbb{R}^{m\times m}$ diagonal, and $L, \tilde L\in\mathbb{R}^{n\times n}$ lower triangular).

Computing $\tilde L$ in this way is done in $mn^2 + \mathcal{O}(n^2 + mn)$ operations rather than the $\frac16 n^3 + \frac12 mn^2 + \mathcal{O}(n^2 + mn)$ operations required for the explicit evaluation and factorization of $\tilde H$. When $m \ll n$, this results in a considerable speedup over full factorization, enabling efficient low-rank updates of Cholesky factorizations, for use in e.g. iterative algorithms for numerical optimization.

Additionally, hyhound includes efficient routines for updating factorizations of the Riccati recursion for optimal control problems.

Preprint

The paper describing the algorithms in this repository can be found on arXiv: https://arxiv.org/abs/2503.15372v1

bibtex @misc{pas_blocked_2025, title = {Blocked {Cholesky} factorization updates of the {Riccati} recursion using hyperbolic {Householder} transformations}, url = {http://arxiv.org/abs/2503.15372}, doi = {10.48550/arXiv.2503.15372}, publisher = {arXiv}, author = {Pas, Pieter and Patrinos, Panagiotis}, month = mar, year = {2025}, note = {Accepted for publication in the Proceedings of CDC 2025} }

Building hyhound from source (Linux)

Requirements: Conan (2.19.1), Intel MKL.

If this is your first time using Conan, create a default profile for your system: sh conan profile detect Download the source code and recipes for building the dependencies: sh git clone https://github.com/kul-optec/hyhound cd hyhound git clone https://github.com/tttapa/conan-recipes conan remote add tttapa-conan-recipes "$PWD/conan-recipes" Install the dependencies using Conan and build the project: sh conan build . --build=missing -pr profiles/desktop \ -s build_type=Release \ -c tools.build:skip_test=True \ -o guanaqo/\*:with_openmp=True \ -o guanaqo/\*:with_mkl=True \ -o \&:with_ocp=True \ -o \&:with_benchmarks=True

The desktop profile enables AVX-512. If this is not supported by your hardware, you can use the laptop profile, which uses AVX2 only (for Intel Skylake and newer).

OpenBLAS can be used instead of the Intel MKL by passing the option -o guanaqo/\*:with_mkl=False to Conan. Be sure to use CMake's --fresh flag to reconfigure the project after making this change.

Only libstdc++ is currently supported (GCC 12-15 or Clang 18-20).

Reproducing the benchmark results

sh OMP_NUM_THREADS=1 ./build/benchmarks/Release/benchmark-hyh \ --benchmark_out=hyh.json --benchmark_repetitions=5 --benchmark_min_time=0.02s \ --benchmark_enable_random_interleaving --fix-n --n=64 --m=128 sh OMP_NUM_THREADS=1 ./build/benchmarks/Release/benchmark-ocp \ --benchmark_out=ocp.json --benchmark_repetitions=5 --benchmark_min_time=1000x

Benchmarks

Comparisons of the run time and performance between explicit evaluation and factorization of the matrix $\tilde H = H + A\Sigma A^\top$ (Full factorization) versus factorization updates using hyhound::update_cholesky (HyH update), for different matrix sizes $n$ and varying update ranks $m$. Versions with different block sizes $r$ are shown in different colors (with the unblocked version in gray).

Experiments carried out on Intel Core i7-11700 at 2.5 GHz (without dynamic frequency scaling), using version 2025.0 of the Intel MKL for the full factorization (serial).

Large matrices

| Double precision | |:---:| | |

| Single precision | |:---:| | |

| Double precision | Single precision | |:---:|:---:| | | |

Medium-sized matrices

| Double precision | |:---:| | |

| Single precision | |:---:| | |

| Double precision | Single precision | |:---:|:---:| | | |

Small matrices

| Double precision | |:---:| | |

| Single precision | |:---:| | |

| Double precision | Single precision | |:---:|:---:| | | |

Optimal control benchmarks

Factorization and factorization updates of problems with optimal control structure, as described in sections IV and V of the paper.

Large problems

| $N=20,\quad nx=240,\quad nu=80,\quad n_c=240$ | |:---:| | |

Medium-sized problems

| $N=20,\quad nx=24,\quad nu=8,\quad n_c=24$ | |:---:| | |

Small problems

| $N=20,\quad nx=6,\quad nu=2,\quad n_c=6$ | |:---:| | |

Owner

  • Name: OPTEC
  • Login: kul-optec
  • Kind: organization

KU Leuven Center of Excellence: Optimization in Engineering

GitHub Events

Total
  • Watch event: 2
  • Push event: 8
  • Create event: 3
Last Year
  • Watch event: 2
  • Push event: 8
  • Create event: 3

Committers

Last synced: 8 months ago

All Time
  • Total Commits: 28
  • Total Committers: 1
  • Avg Commits per committer: 28.0
  • Development Distribution Score (DDS): 0.0
Past Year
  • Commits: 28
  • Committers: 1
  • Avg Commits per committer: 28.0
  • Development Distribution Score (DDS): 0.0
Top Committers
Name Email Commits
Pieter Pas p****v@o****m 28

Issues and Pull Requests

Last synced: 8 months ago

All Time
  • Total issues: 0
  • Total pull requests: 0
  • Average time to close issues: N/A
  • Average time to close pull requests: N/A
  • Total issue authors: 0
  • Total pull request authors: 0
  • Average comments per issue: 0
  • Average comments per pull request: 0
  • Merged pull requests: 0
  • Bot issues: 0
  • Bot pull requests: 0
Past Year
  • Issues: 0
  • Pull requests: 0
  • Average time to close issues: N/A
  • Average time to close pull requests: N/A
  • Issue authors: 0
  • Pull request authors: 0
  • Average comments per issue: 0
  • Average comments per pull request: 0
  • Merged pull requests: 0
  • Bot issues: 0
  • Bot pull requests: 0
Top Authors
Issue Authors
Pull Request Authors
Top Labels
Issue Labels
Pull Request Labels

Packages

  • Total packages: 1
  • Total downloads: unknown
  • Total dependent packages: 0
  • Total dependent repositories: 0
  • Total versions: 1
  • Total maintainers: 1
pypi.org: hyhound

Hyperbolic Householder transformations for Up- and Downdating Cholesky factorizations.

  • Versions: 1
  • Dependent Packages: 0
  • Dependent Repositories: 0
Rankings
Dependent packages count: 8.5%
Average: 28.2%
Dependent repos count: 48.0%
Maintainers (1)
Last synced: 5 months ago