https://github.com/kundajelab/chromdragonn

Code for the paper "Integrating regulatory DNA sequence and gene expression to predict genome-wide chromatin accessibility across cellular contexts"

https://github.com/kundajelab/chromdragonn

Science Score: 23.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
  • codemeta.json file
  • .zenodo.json file
  • DOI references
    Found 2 DOI reference(s) in README
  • Academic publication links
    Links to: zenodo.org
  • Academic email domains
  • Institutional organization owner
  • JOSS paper metadata
  • Scientific vocabulary similarity
    Low similarity (10.2%) to scientific vocabulary

Keywords

chromatin-accessibiity deep-learning epigenetics gene-regulation genomics
Last synced: 4 months ago · JSON representation

Repository

Code for the paper "Integrating regulatory DNA sequence and gene expression to predict genome-wide chromatin accessibility across cellular contexts"

Basic Info
  • Host: GitHub
  • Owner: kundajelab
  • License: mit
  • Language: Jupyter Notebook
  • Default Branch: master
  • Homepage:
  • Size: 1.27 MB
Statistics
  • Stars: 44
  • Watchers: 7
  • Forks: 11
  • Open Issues: 0
  • Releases: 0
Topics
chromatin-accessibiity deep-learning epigenetics gene-regulation genomics
Created about 7 years ago · Last pushed over 4 years ago
Metadata Files
Readme License

README.md

ChromDragoNN: cis-trans Deep RegulAtory Genomic Neural Network for predicting Chromatin Accessibility

This repository contains code for our paper "Integrating regulatory DNA sequence and gene expression to predict genome-wide chromatin accessibility across cellular contexts". The models are implemented in PyTorch.

Data

All associated data from our paper can be downloaded from here or here.

Untar the dnase.chr.packbited.tar.gz file (occupies ~30 Gb).

If you have your own data, you may use scripts in the preprocess/ directory.

Preparing Accessibility Data

For the accessibility matrix, prepare your data in the following format as a tab-separated gzipped file. chr start end task1 task2 ... taskM chr1 50 1050 0 0 0 chr1 1000 2000 1 0 1 ... chr2 100 1100 1 0 1

ChromDragoNN works on binary data and hence do ensure that the labels are all 0 or 1 only.

Then use the following command to process the data (this may take a few hours depending on the size of your dataset): bash python ./preprocess/make_accessibility_joblib.py --input /path/to/accessibility/file.tsv.gz --output_dir /path/to/dnase/packbited --genome_fasta /path/to/genome/fasta.fa Make sure the output directory exists!

If you wish to generate the binary matrix from peaks (e.g. narrowPeak), have a look at the seqdataloader repo.

Preparing RNA Data

For the RNA matrix, prepare your data in the following format as a tab-separated file (NOT gzipped). gene task1 task2 ... taskM MEOX1 3.5189 2.8237 3.7542 SOX8 0.0 0.0 1.9623 ... ZNF195 0.0 0.1232 0.0023 The gene expression values must already be appropriately normalised. In our paper, we use the arcsinh(TPM) values for 1630 Transcription Factors. Do ensure the number and order of the tasks is the same as in the accessibility data.

Then use the following command to process the data: bash python ./preprocess/make_rna_joblib.py --input /path/to/rna/file.tsv --output_prefix /path/to/rna/prefix

This will output /path/to/rna/prefix.joblib RNA quants file.

Model Training

Stage 1

The stage 1 models predict accessibility across all training cell types from only sequence, and does not utilise RNA-seq profiles.

The model_zoo/stage1 directory contains models for the Vanilla, Factorized and our ResNet models.

To start training any of these models (say, ResNet), from the model_zoo/stage1 directory:

bash python resnet.py -cp /path/to/stage1/checkpoint/dir --dnase /path/to/dnase/packbited --rna_quants /path/to/rna_quants_1630tf.joblib

For other inputs, such as hyperparameters, refer

bash python resnet.py --help

Stage 2

The stage 2 models predict accessibility for each cell type, sequence pair and uses RNA-seq profiles.

The model_zoo/stage2 directory contains models for the stage 2 models, which may be trained with or without mean accessibility feature as input (explained in more detail in the paper).

To start training any of these models (say, ResNet, with mean), from the model_zoo/stage2 directory:

bash python simple.py -cp /path/to/stage2/checkpoint/dir --dnase /path/to/dnase/packbited --rna_quants /path/to/rna_quants_1630tf.joblib --stage1_file ../stage1/resnet.py --stage1_pretrained_model_path /path/to/stage1/checkpoint/dir --with_mean 1

The model loads weights from the best model from the stage 1 checkpoint directory. You may resume training from a previous checkpoint by adding the argument -rb 1 to the above command. To predict on the test set, add the arguments -rb 1 -ev 1 to the above command. This will generate a report of performance on the test set and also produce precision-recall plots.

For other inputs, such as hyperparameters, refer

bash python simple.py --help

Citation

If you use this code for your research, please cite our paper:

Surag Nair, Daniel S Kim, Jacob Perricone, Anshul Kundaje, Integrating regulatory DNA sequence and gene expression to predict genome-wide chromatin accessibility across cellular contexts, Bioinformatics, Volume 35, Issue 14, July 2019, Pages i108–i116, https://doi.org/10.1093/bioinformatics/btz352

Owner

  • Name: Kundaje Lab
  • Login: kundajelab
  • Kind: organization
  • Location: Stanford University

Compbio and machine learning code repositories from the Kundaje Lab at Stanford Genetics and Computer Science Depts.

GitHub Events

Total
Last Year