DiffEqBayes
Extension functionality which uses Stan.jl, DynamicHMC.jl, and Turing.jl to estimate the parameters to differential equations and perform Bayesian probabilistic scientific machine learning
Science Score: 54.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
✓CITATION.cff file
Found CITATION.cff file -
✓codemeta.json file
Found codemeta.json file -
✓.zenodo.json file
Found .zenodo.json file -
○DOI references
-
○Academic publication links
-
✓Committers with academic emails
6 of 28 committers (21.4%) from academic institutions -
○Institutional organization owner
-
○JOSS paper metadata
-
○Scientific vocabulary similarity
Low similarity (12.9%) to scientific vocabulary
Keywords
Keywords from Contributors
Repository
Extension functionality which uses Stan.jl, DynamicHMC.jl, and Turing.jl to estimate the parameters to differential equations and perform Bayesian probabilistic scientific machine learning
Basic Info
- Host: GitHub
- Owner: SciML
- License: other
- Language: Julia
- Default Branch: master
- Homepage: https://docs.sciml.ai/DiffEqBayes/stable/
- Size: 41.5 MB
Statistics
- Stars: 125
- Watchers: 11
- Forks: 28
- Open Issues: 16
- Releases: 62
Topics
Metadata Files
README.md
DiffEqBayes.jl
This repository is a set of extension functionality for estimating the parameters of differential equations using Bayesian methods. It allows the choice of using CmdStan.jl, Turing.jl, DynamicHMC.jl and ApproxBayes.jl to perform a Bayesian estimation of a differential equation problem specified via the DifferentialEquations.jl interface.
To begin you first need to add this repository using the following command.
julia
Pkg.add("DiffEqBayes")
using DiffEqBayes
Tutorials and Documentation
For information on using the package, see the stable documentation. Use the in-development documentation for the version of the documentation, which contains the unreleased features.
Example
```julia using ParameterizedFunctions, OrdinaryDiffEq, RecursiveArrayTools, Distributions f1 = @ode_def LotkaVolterra begin dx = a * x - x * y dy = -3 * y + x * y end a
p = [1.5] u0 = [1.0, 1.0] tspan = (0.0, 10.0) prob1 = ODEProblem(f1, u0, tspan, p)
σ = 0.01 # noise, fixed for now t = collect(1.0:10.0) # observation times sol = solve(prob1, Tsit5()) priors = [Normal(1.5, 1)] randomized = VectorOfArray([(sol(t[i]) + σ * randn(2)) for i in 1:length(t)]) data = convert(Array, randomized)
using CmdStan #required for using the Stan backend bayesianresultstan = stan_inference(prob1, t, data, priors)
bayesianresultturing = turing_inference(prob1, Tsit5(), t, data, priors)
using DynamicHMC #required for DynamicHMC backend bayesianresulthmc = dynamichmc_inference(prob1, Tsit5(), t, data, priors)
bayesianresultabc = abc_inference(prob1, Tsit5(), t, data, priors) ```
Using save_idxs to declare observables
You don't always have data for all of the variables of the model. In case of certain latent variables
you can utilise the save_idxs kwarg to declare the observed variables and run the inference using any
of the backends as shown below.
```julia sol = solve(prob1, Tsit5(), save_idxs = [1]) randomized = VectorOfArray([(sol(t[i]) + σ * randn(1)) for i in 1:length(t)]) data = convert(Array, randomized)
using CmdStan #required for using the Stan backend bayesianresultstan = staninference(prob1, t, data, priors, saveidxs = [1])
bayesianresultturing = turinginference(prob1, Tsit5(), t, data, priors, saveidxs = [1])
using DynamicHMC #required for DynamicHMC backend bayesianresulthmc = dynamichmcinference(prob1, Tsit5(), t, data, priors, saveidxs = [1])
bayesianresultabc = abcinference(prob1, Tsit5(), t, data, priors, saveidxs = [1]) ```
Owner
- Name: SciML Open Source Scientific Machine Learning
- Login: SciML
- Kind: organization
- Email: contact@chrisrackauckas.com
- Website: https://sciml.ai
- Twitter: SciML_Org
- Repositories: 170
- Profile: https://github.com/SciML
Open source software for scientific machine learning
Citation (CITATION.bib)
@article{DifferentialEquations.jl-2017,
author = {Rackauckas, Christopher and Nie, Qing},
doi = {10.5334/jors.151},
journal = {The Journal of Open Research Software},
keywords = {Applied Mathematics},
note = {Exported from https://app.dimensions.ai on 2019/05/05},
number = {1},
pages = {},
title = {DifferentialEquations.jl – A Performant and Feature-Rich Ecosystem for Solving Differential Equations in Julia},
url = {https://app.dimensions.ai/details/publication/pub.1085583166 and http://openresearchsoftware.metajnl.com/articles/10.5334/jors.151/galley/245/download/},
volume = {5},
year = {2017}
}
GitHub Events
Total
- Create event: 21
- Issues event: 1
- Release event: 1
- Watch event: 3
- Delete event: 18
- Issue comment event: 8
- Push event: 32
- Pull request review event: 3
- Pull request review comment event: 4
- Pull request event: 37
Last Year
- Create event: 21
- Issues event: 1
- Release event: 1
- Watch event: 3
- Delete event: 18
- Issue comment event: 8
- Push event: 32
- Pull request review event: 3
- Pull request review comment event: 4
- Pull request event: 37
Committers
Last synced: 8 months ago
Top Committers
| Name | Commits | |
|---|---|---|
| Christopher Rackauckas | a****s@c****m | 202 |
| Unknown | v****t@g****m | 136 |
| github-actions[bot] | 4****] | 56 |
| CompatHelper Julia | c****y@j****g | 25 |
| David Widmann | d****n | 21 |
| Ayush Pandey | a****p@g****m | 18 |
| Yao Lu | l****s@g****m | 18 |
| Arno Strouwen | a****n@t****e | 10 |
| dependabot[bot] | 4****] | 9 |
| abhinavgupta768 | a****8@g****m | 8 |
| Saumil Shah | s****h@e****e | 7 |
| Kai Xu | x****0@g****m | 5 |
| Mauro Werder | m****c@r****m | 5 |
| maja.k.gwozdz@gmail.com | m****z@g****m | 4 |
| Anant Thazhemadam | a****m@g****m | 3 |
| Sasha Petrenko | s****5@u****u | 3 |
| mohamed82008 | m****8@g****m | 3 |
| Chris de Graaf | me@c****v | 3 |
| Saumil Shah | s****7@g****m | 2 |
| Sebastian Micluța-Câmpeanu | m****5@g****m | 2 |
| Anand | a****j@u****u | 1 |
| Anshul Singhvi | a****7@s****u | 1 |
| Arthur Newbury | 5****t | 1 |
| Hendrik Ranocha | m****l@r****e | 1 |
| Julia TagBot | 5****t | 1 |
| Marc | m****3@u****k | 1 |
| Lilith Orion Hafner | l****r@g****m | 1 |
| Wally Xie | x****w@u****u | 1 |
Committer Domains (Top 20 + Academic)
Issues and Pull Requests
Last synced: 6 months ago
All Time
- Total issues: 19
- Total pull requests: 139
- Average time to close issues: 4 months
- Average time to close pull requests: about 1 month
- Total issue authors: 14
- Total pull request authors: 12
- Average comments per issue: 8.26
- Average comments per pull request: 0.47
- Merged pull requests: 79
- Bot issues: 0
- Bot pull requests: 91
Past Year
- Issues: 1
- Pull requests: 26
- Average time to close issues: 19 days
- Average time to close pull requests: about 1 month
- Issue authors: 1
- Pull request authors: 2
- Average comments per issue: 3.0
- Average comments per pull request: 0.0
- Merged pull requests: 6
- Bot issues: 0
- Bot pull requests: 16
Top Authors
Issue Authors
- Vaibhavdixit02 (3)
- ChrisRackauckas (2)
- nsiccha (2)
- ArnoStrouwen (2)
- marcjwilliams1 (1)
- math4mad (1)
- AP6YC (1)
- MaAl13 (1)
- brendandaisy (1)
- TheFibonacciEffect (1)
- Song921012 (1)
- JuliaTagBot (1)
- goedman (1)
- saumil-sh (1)
Pull Request Authors
- github-actions[bot] (90)
- ChrisRackauckas (17)
- ArnoStrouwen (12)
- dependabot[bot] (11)
- Vaibhavdixit02 (8)
- saumil-sh (5)
- devmotion (4)
- thazhemadam (2)
- AP6YC (1)
- EvoArt (1)
- ranocha (1)
Top Labels
Issue Labels
Pull Request Labels
Packages
- Total packages: 1
-
Total downloads:
- julia 18 total
- Total dependent packages: 1
- Total dependent repositories: 0
- Total versions: 52
juliahub.com: DiffEqBayes
Extension functionality which uses Stan.jl, DynamicHMC.jl, and Turing.jl to estimate the parameters to differential equations and perform Bayesian probabilistic scientific machine learning
- Homepage: https://docs.sciml.ai/DiffEqBayes/stable/
- Documentation: https://docs.juliahub.com/General/DiffEqBayes/stable/
- License: MIT
-
Latest release: 3.9.0
published 8 months ago