DiffEqBayes

Extension functionality which uses Stan.jl, DynamicHMC.jl, and Turing.jl to estimate the parameters to differential equations and perform Bayesian probabilistic scientific machine learning

https://github.com/sciml/diffeqbayes.jl

Science Score: 54.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
    Found CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
    Found .zenodo.json file
  • DOI references
  • Academic publication links
  • Committers with academic emails
    6 of 28 committers (21.4%) from academic institutions
  • Institutional organization owner
  • JOSS paper metadata
  • Scientific vocabulary similarity
    Low similarity (12.9%) to scientific vocabulary

Keywords

bayesian-inference dae dde differential-equations julia neural-differential-equations neural-ode ode ordinary-differential-equations probabilistic-programming scientific-ai scientific-machine-learning scientific-ml sciml sde stan stochastic-differential-equations

Keywords from Contributors

matrix-exponential pde julialang wiener-process partial-differential-equations neural-sde brownian-motion noise-processes stochastic-processes krylov-subspace-methods
Last synced: 6 months ago · JSON representation ·

Repository

Extension functionality which uses Stan.jl, DynamicHMC.jl, and Turing.jl to estimate the parameters to differential equations and perform Bayesian probabilistic scientific machine learning

Basic Info
Statistics
  • Stars: 125
  • Watchers: 11
  • Forks: 28
  • Open Issues: 16
  • Releases: 62
Topics
bayesian-inference dae dde differential-equations julia neural-differential-equations neural-ode ode ordinary-differential-equations probabilistic-programming scientific-ai scientific-machine-learning scientific-ml sciml sde stan stochastic-differential-equations
Created over 8 years ago · Last pushed 6 months ago
Metadata Files
Readme License Citation

README.md

DiffEqBayes.jl

Join the chat at https://julialang.zulipchat.com #sciml-bridged Global Docs

codecov Build Status

ColPrac: Contributor's Guide on Collaborative Practices for Community Packages SciML Code Style

This repository is a set of extension functionality for estimating the parameters of differential equations using Bayesian methods. It allows the choice of using CmdStan.jl, Turing.jl, DynamicHMC.jl and ApproxBayes.jl to perform a Bayesian estimation of a differential equation problem specified via the DifferentialEquations.jl interface.

To begin you first need to add this repository using the following command.

julia Pkg.add("DiffEqBayes") using DiffEqBayes

Tutorials and Documentation

For information on using the package, see the stable documentation. Use the in-development documentation for the version of the documentation, which contains the unreleased features.

Example

```julia using ParameterizedFunctions, OrdinaryDiffEq, RecursiveArrayTools, Distributions f1 = @ode_def LotkaVolterra begin dx = a * x - x * y dy = -3 * y + x * y end a

p = [1.5] u0 = [1.0, 1.0] tspan = (0.0, 10.0) prob1 = ODEProblem(f1, u0, tspan, p)

σ = 0.01 # noise, fixed for now t = collect(1.0:10.0) # observation times sol = solve(prob1, Tsit5()) priors = [Normal(1.5, 1)] randomized = VectorOfArray([(sol(t[i]) + σ * randn(2)) for i in 1:length(t)]) data = convert(Array, randomized)

using CmdStan #required for using the Stan backend bayesianresultstan = stan_inference(prob1, t, data, priors)

bayesianresultturing = turing_inference(prob1, Tsit5(), t, data, priors)

using DynamicHMC #required for DynamicHMC backend bayesianresulthmc = dynamichmc_inference(prob1, Tsit5(), t, data, priors)

bayesianresultabc = abc_inference(prob1, Tsit5(), t, data, priors) ```

Using save_idxs to declare observables

You don't always have data for all of the variables of the model. In case of certain latent variables you can utilise the save_idxs kwarg to declare the observed variables and run the inference using any of the backends as shown below.

```julia sol = solve(prob1, Tsit5(), save_idxs = [1]) randomized = VectorOfArray([(sol(t[i]) + σ * randn(1)) for i in 1:length(t)]) data = convert(Array, randomized)

using CmdStan #required for using the Stan backend bayesianresultstan = staninference(prob1, t, data, priors, saveidxs = [1])

bayesianresultturing = turinginference(prob1, Tsit5(), t, data, priors, saveidxs = [1])

using DynamicHMC #required for DynamicHMC backend bayesianresulthmc = dynamichmcinference(prob1, Tsit5(), t, data, priors, saveidxs = [1])

bayesianresultabc = abcinference(prob1, Tsit5(), t, data, priors, saveidxs = [1]) ```

Owner

  • Name: SciML Open Source Scientific Machine Learning
  • Login: SciML
  • Kind: organization
  • Email: contact@chrisrackauckas.com

Open source software for scientific machine learning

Citation (CITATION.bib)

@article{DifferentialEquations.jl-2017,
 author = {Rackauckas, Christopher and Nie, Qing},
 doi = {10.5334/jors.151},
 journal = {The Journal of Open Research Software},
 keywords = {Applied Mathematics},
 note = {Exported from https://app.dimensions.ai on 2019/05/05},
 number = {1},
 pages = {},
 title = {DifferentialEquations.jl – A Performant and Feature-Rich Ecosystem for Solving Differential Equations in Julia},
 url = {https://app.dimensions.ai/details/publication/pub.1085583166 and http://openresearchsoftware.metajnl.com/articles/10.5334/jors.151/galley/245/download/},
 volume = {5},
 year = {2017}
}

GitHub Events

Total
  • Create event: 21
  • Issues event: 1
  • Release event: 1
  • Watch event: 3
  • Delete event: 18
  • Issue comment event: 8
  • Push event: 32
  • Pull request review event: 3
  • Pull request review comment event: 4
  • Pull request event: 37
Last Year
  • Create event: 21
  • Issues event: 1
  • Release event: 1
  • Watch event: 3
  • Delete event: 18
  • Issue comment event: 8
  • Push event: 32
  • Pull request review event: 3
  • Pull request review comment event: 4
  • Pull request event: 37

Committers

Last synced: 8 months ago

All Time
  • Total Commits: 548
  • Total Committers: 28
  • Avg Commits per committer: 19.571
  • Development Distribution Score (DDS): 0.631
Past Year
  • Commits: 16
  • Committers: 6
  • Avg Commits per committer: 2.667
  • Development Distribution Score (DDS): 0.688
Top Committers
Name Email Commits
Christopher Rackauckas a****s@c****m 202
Unknown v****t@g****m 136
github-actions[bot] 4****] 56
CompatHelper Julia c****y@j****g 25
David Widmann d****n 21
Ayush Pandey a****p@g****m 18
Yao Lu l****s@g****m 18
Arno Strouwen a****n@t****e 10
dependabot[bot] 4****] 9
abhinavgupta768 a****8@g****m 8
Saumil Shah s****h@e****e 7
Kai Xu x****0@g****m 5
Mauro Werder m****c@r****m 5
maja.k.gwozdz@gmail.com m****z@g****m 4
Anant Thazhemadam a****m@g****m 3
Sasha Petrenko s****5@u****u 3
mohamed82008 m****8@g****m 3
Chris de Graaf me@c****v 3
Saumil Shah s****7@g****m 2
Sebastian Micluța-Câmpeanu m****5@g****m 2
Anand a****j@u****u 1
Anshul Singhvi a****7@s****u 1
Arthur Newbury 5****t 1
Hendrik Ranocha m****l@r****e 1
Julia TagBot 5****t 1
Marc m****3@u****k 1
Lilith Orion Hafner l****r@g****m 1
Wally Xie x****w@u****u 1

Issues and Pull Requests

Last synced: 6 months ago

All Time
  • Total issues: 19
  • Total pull requests: 139
  • Average time to close issues: 4 months
  • Average time to close pull requests: about 1 month
  • Total issue authors: 14
  • Total pull request authors: 12
  • Average comments per issue: 8.26
  • Average comments per pull request: 0.47
  • Merged pull requests: 79
  • Bot issues: 0
  • Bot pull requests: 91
Past Year
  • Issues: 1
  • Pull requests: 26
  • Average time to close issues: 19 days
  • Average time to close pull requests: about 1 month
  • Issue authors: 1
  • Pull request authors: 2
  • Average comments per issue: 3.0
  • Average comments per pull request: 0.0
  • Merged pull requests: 6
  • Bot issues: 0
  • Bot pull requests: 16
Top Authors
Issue Authors
  • Vaibhavdixit02 (3)
  • ChrisRackauckas (2)
  • nsiccha (2)
  • ArnoStrouwen (2)
  • marcjwilliams1 (1)
  • math4mad (1)
  • AP6YC (1)
  • MaAl13 (1)
  • brendandaisy (1)
  • TheFibonacciEffect (1)
  • Song921012 (1)
  • JuliaTagBot (1)
  • goedman (1)
  • saumil-sh (1)
Pull Request Authors
  • github-actions[bot] (90)
  • ChrisRackauckas (17)
  • ArnoStrouwen (12)
  • dependabot[bot] (11)
  • Vaibhavdixit02 (8)
  • saumil-sh (5)
  • devmotion (4)
  • thazhemadam (2)
  • AP6YC (1)
  • EvoArt (1)
  • ranocha (1)
Top Labels
Issue Labels
bug (1)
Pull Request Labels
dependencies (11)

Packages

  • Total packages: 1
  • Total downloads:
    • julia 18 total
  • Total dependent packages: 1
  • Total dependent repositories: 0
  • Total versions: 52
juliahub.com: DiffEqBayes

Extension functionality which uses Stan.jl, DynamicHMC.jl, and Turing.jl to estimate the parameters to differential equations and perform Bayesian probabilistic scientific machine learning

  • Versions: 52
  • Dependent Packages: 1
  • Dependent Repositories: 0
  • Downloads: 18 Total
Rankings
Forks count: 5.8%
Stargazers count: 6.3%
Dependent repos count: 9.9%
Average: 11.2%
Dependent packages count: 23.0%
Last synced: 6 months ago