Science Score: 67.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
✓CITATION.cff file
Found CITATION.cff file -
✓codemeta.json file
Found codemeta.json file -
✓.zenodo.json file
Found .zenodo.json file -
✓DOI references
Found 12 DOI reference(s) in README -
○Academic publication links
-
✓Committers with academic emails
1 of 6 committers (16.7%) from academic institutions -
○Institutional organization owner
-
○JOSS paper metadata
-
○Scientific vocabulary similarity
Low similarity (8.8%) to scientific vocabulary
Keywords
Repository
Coprolite host Identification pipeline
Basic Info
- Host: GitHub
- Owner: nf-core
- License: mit
- Language: Nextflow
- Default Branch: master
- Homepage: https://nf-co.re/coproid
- Size: 112 MB
Statistics
- Stars: 13
- Watchers: 92
- Forks: 5
- Open Issues: 2
- Releases: 4
Topics
Metadata Files
README.md
Introduction
nf-core/coproid is a bioinformatics pipeline that helps you identify the "true maker" of Illumina sequenced (Paleo)faeces by checking the microbiome composition and the endogenous host DNA.
It combines the analysis of putative host (ancient) DNA with a machine learning prediction of the faeces source based on microbiome taxonomic composition:
A. First coproID performs comparative mapping of all reads agains two (or three) target genomes (genome1, genome2, and potentially genome3) and computes a host-DNA species ratio (NormalisedProportion). B. Then coproID performs metagenomic taxonomic profiling, and compares the obtained profiles to modern reference samples of the target species metagenomes. Using machine learning, coproID then estimates the host source from the metagenomic taxonomic composition (SourcepredictProportion). C. Finally, coproID combines the A and B proportions to predict the likely host of the metagenomic sample.

Wokflow overview
- Read QC (
FastQC) - Fastp to remove adapters and low-complexity reads (
fastp) - Mapping or reads to multiple reference genomes (
Bowtie2) - Lowest Common Ancestor analysis to retain only genome specific reads (
sam2lca) - Ancient DNA damage estimation with pyDamage and DamageProfiler
- Taxonomic profiling of unmapped reads (
kraken2) - Source predicting based on taxonic profiles (
sourcepredict) - Combining host and microbial predictions to calculate overall proportions.
- (
MultiQC) aggregate results of several individual modules. - ([Quartonotebook])(https://quarto.org/) creates a report with sample results.
The coproID pipeline is built using Nextflow, a workflow tool to run tasks across multiple compute infrastructures in a very portable manner. It comes with docker containers making installation trivial and results highly reproducible. The Nextflow DSL2 implementation of this pipeline uses one container per process which makes it much easier to maintain and update software dependencies. Where possible, these processes have been submitted to and installed from nf-core/modules in order to make them available to all nf-core pipelines, and to everyone within the Nextflow community!
Usage
[!NOTE] If you are new to Nextflow and nf-core, please refer to this page on how to set-up Nextflow. Make sure to test your setup with
-profile testbefore running the workflow on actual data.
Pipeline usage First, prepare a samplesheet with your input data that looks as follows:
samplesheet.csv:
csv title="samplesheet.csv"
sample,fastq_1,fastq_2
PAIRED_END,PAIRED_END_S1_L002_R1_001.fastq.gz,PAIRED_END_S1_L002_R2_001.fastq.gz
SINGLE_END,SINGLE_END_S4_L003_R1_001.fastq.gz,
Each row represents a fastq file (single-end) or a pair of fastq files (paired end).
:::warning Make sure that your reference genomes are from ncbi, so sam2lca can extract the taxid! :::
Second, prepare a genomesheet with your input genome references that looks as follows:
genomesheet.csv:
csv title="genomesheet.csv"
genome_name,taxid,genome_size,igenome,fasta,index
Escherichia_coli,562,5000000,,https://github.com/nf-core/test-datasets/raw/coproid/genomes/ecoli/genome.fa,
Bacillus_subtilis,1423,4200000,,https://github.com/nf-core/test-datasets/raw/coproid/genomes/bsubtilis/genome.fa,
Before running the pipeline, you need to download a kraken2 database, and supply this to the pipeline using --kraken2_db The kraken2 database can be a directory or *.tar.gz
You also need to create/download the reference files for sourcepredict. These include the source anf label files, for more information see sourcepredict
Now, you can run the pipeline using:
bash
nextflow run nf-core/coproid \
-profile <docker/singularity/.../institute> \
--input samplesheet.csv \
--genome_sheet genomesheet.csv \
--kraken2_db 'PATH/TO/KRAKENDB' \
--sp_sources 'PATH/TO/SOURCEPREDICT/SOURCES/FILE' \
--sp_labels 'PATH/TO/SOURCEPREDICT/LABELS/FILE' \
--outdir <OUTDIR>
[!WARNING] Please provide pipeline parameters via the CLI or Nextflow
-params-fileoption. Custom config files including those provided by the-cNextflow option can be used to provide any configuration except for parameters; see docs.
For more details and further functionality, please refer to the usage documentation and the parameter documentation.
Pipeline output
To see the results of an example test run with a full size dataset refer to the results tab on the nf-core website pipeline page. For more details about the output files and reports, please refer to the output documentation.
Credits
nf-core/coproid was originally written by Maxime Borry & Meriam Van Os.
Contributions and Support
If you would like to contribute to this pipeline, please see the contributing guidelines.
For further information or help, don't hesitate to get in touch on the Slack #coproid channel (you can join with this invite).
Citations
If you use nf-core/coproid for your analysis, please cite it using the following doi: 10.5281/zenodo.7292889
An extensive list of references for the tools used by the pipeline can be found in the CITATIONS.md file.
You can cite the nf-core publication as follows:
The nf-core framework for community-curated bioinformatics pipelines.
Philip Ewels, Alexander Peltzer, Sven Fillinger, Harshil Patel, Johannes Alneberg, Andreas Wilm, Maxime Ulysse Garcia, Paolo Di Tommaso & Sven Nahnsen.
Nat Biotechnol. 2020 Feb 13. doi: 10.1038/s41587-020-0439-x.
Owner
- Name: nf-core
- Login: nf-core
- Kind: organization
- Email: core@nf-co.re
- Website: http://nf-co.re
- Twitter: nf_core
- Repositories: 84
- Profile: https://github.com/nf-core
A community effort to collect a curated set of analysis pipelines built using Nextflow.
Citation (CITATIONS.md)
# nf-core/coproid: Citations ## [nf-core](https://pubmed.ncbi.nlm.nih.gov/32055031/) > Ewels PA, Peltzer A, Fillinger S, Patel H, Alneberg J, Wilm A, Garcia MU, Di Tommaso P, Nahnsen S. The nf-core framework for community-curated bioinformatics pipelines. Nat Biotechnol. 2020 Mar;38(3):276-278. doi: 10.1038/s41587-020-0439-x. PubMed PMID: 32055031. ## [Nextflow](https://pubmed.ncbi.nlm.nih.gov/28398311/) > Di Tommaso P, Chatzou M, Floden EW, Barja PP, Palumbo E, Notredame C. Nextflow enables reproducible computational workflows. Nat Biotechnol. 2017 Apr 11;35(4):316-319. doi: 10.1038/nbt.3820. PubMed PMID: 28398311. ## Pipeline tools - [BBnorm/BBTools](http://sourceforge.net/projects/bbmap/) - [Bowtie2](https:/dx.doi.org/10.1038/nmeth.1923) > Langmead, B. and Salzberg, S. L. 2012 Fast gapped-read alignment with Bowtie 2. Nature methods, 9(4), p. 357–359. doi: 10.1038/nmeth.1923. - [damageprofiler]() > Neukamm, J, Peltzer, A, and Nieselt, K. (2020). DamageProfiler: Fast damage pattern calculation for ancient DNA. Bioinformatics. doi: 10.1093/bioinformatics/btab190 - [FastP](https://doi.org/10.1093/bioinformatics/bty560) > Chen, S., Zhou, Y., Chen, Y., & Gu, J. (2018). fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics , 34(17), i884–i890. doi: 10.1093/bioinformatics/bty560. - [FastQC](https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) > Andrews, S. (2010). FastQC: A Quality Control Tool for High Throughput Sequence Data [Online]. - [Kraken2](https://doi.org/10.1186/s13059-019-1891-0) > Wood, D et al., 2019. Improved metagenomic analysis with Kraken 2. Genome Biology volume 20, Article number: 257. doi: 10.1186/s13059-019-1891-0. - [MultiQC](https://pubmed.ncbi.nlm.nih.gov/27312411/) > Ewels P, Magnusson M, Lundin S, Käller M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics. 2016 Oct 1;32(19):3047-8. doi: 10.1093/bioinformatics/btw354. Epub 2016 Jun 16. PubMed PMID: 27312411; PubMed Central PMCID: PMC5039924. - [PyDamage](https://doi.org/10.7717/peerj.11845) > Borry M, Hübner A, Rohrlach AB, Warinner C. 2021. PyDamage: automated ancient damage identification and estimation for contigs in ancient DNA de novo assembly. PeerJ 9:e11845 doi: 10.7717/peerj.11845. - [Quarto](https://quarto.org/) > Allaire J, Teague C, Scheidegger C, Xie Y, Dervieux C. Quarto (2022). doi: 10.5281/zenodo.5960048 - [Sam2lca]() > Borry M, Hübner A, Warinner C. 2021. sam2lca: Lowest Common Ancestor for SAM/BAM/CRAM alignment files. The Open Journal. doi: 10.21105/joss.04360. - [SAMtools](https://doi.org/10.1093/bioinformatics/btp352) > Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., … 1000 Genome Project Data Processing Subgroup. (2009). The Sequence Alignment/Map format and SAMtools. Bioinformatics , 25(16), 2078–2079. doi: 10.1093/bioinformatics/btp352. - [sourcepredict](https://sourcepredict.readthedocs.io/en/latest/intro.html) > Borry, Maxime. 2019. Sourcepredict: Prediction of metagenomic sample sources using dimension reduction followed by machine learning classification. Journal of Open Source Software. doi: 10.21105/joss.01540. ## Software packaging/containerisation tools - [Anaconda](https://anaconda.com) > Anaconda Software Distribution. Computer software. Vers. 2-2.4.0. Anaconda, Nov. 2016. Web. - [Bioconda](https://pubmed.ncbi.nlm.nih.gov/29967506/) > Grüning B, Dale R, Sjödin A, Chapman BA, Rowe J, Tomkins-Tinch CH, Valieris R, Köster J; Bioconda Team. Bioconda: sustainable and comprehensive software distribution for the life sciences. Nat Methods. 2018 Jul;15(7):475-476. doi: 10.1038/s41592-018-0046-7. PubMed PMID: 29967506. - [BioContainers](https://pubmed.ncbi.nlm.nih.gov/28379341/) > da Veiga Leprevost F, Grüning B, Aflitos SA, Röst HL, Uszkoreit J, Barsnes H, Vaudel M, Moreno P, Gatto L, Weber J, Bai M, Jimenez RC, Sachsenberg T, Pfeuffer J, Alvarez RV, Griss J, Nesvizhskii AI, Perez-Riverol Y. BioContainers: an open-source and community-driven framework for software standardization. Bioinformatics. 2017 Aug 15;33(16):2580-2582. doi: 10.1093/bioinformatics/btx192. PubMed PMID: 28379341; PubMed Central PMCID: PMC5870671. - [Docker](https://dl.acm.org/doi/10.5555/2600239.2600241) > Merkel, D. (2014). Docker: lightweight linux containers for consistent development and deployment. Linux Journal, 2014(239), 2. doi: 10.5555/2600239.2600241. - [Singularity](https://pubmed.ncbi.nlm.nih.gov/28494014/) > Kurtzer GM, Sochat V, Bauer MW. Singularity: Scientific containers for mobility of compute. PLoS One. 2017 May 11;12(5):e0177459. doi: 10.1371/journal.pone.0177459. eCollection 2017. PubMed PMID: 28494014; PubMed Central PMCID: PMC5426675.
GitHub Events
Total
- Create event: 13
- Issues event: 3
- Watch event: 3
- Delete event: 2
- Member event: 1
- Issue comment event: 9
- Push event: 147
- Pull request review comment event: 73
- Pull request review event: 58
- Pull request event: 32
- Fork event: 2
Last Year
- Create event: 13
- Issues event: 3
- Watch event: 3
- Delete event: 2
- Member event: 1
- Issue comment event: 9
- Push event: 147
- Pull request review comment event: 73
- Pull request review event: 58
- Pull request event: 32
- Fork event: 2
Committers
Last synced: over 2 years ago
Top Committers
| Name | Commits | |
|---|---|---|
| maxibor | m****y@g****m | 300 |
| MaxUlysse | m****a@g****m | 3 |
| Maxime Borry | m****r@u****m | 3 |
| James A. Fellows Yates | j****3@u****m | 1 |
| Maxime Borry | b****y@m****e | 1 |
| runner | r****r@f****0 | 1 |
Committer Domains (Top 20 + Academic)
Issues and Pull Requests
Last synced: 6 months ago
All Time
- Total issues: 8
- Total pull requests: 71
- Average time to close issues: 4 months
- Average time to close pull requests: about 1 month
- Total issue authors: 8
- Total pull request authors: 6
- Average comments per issue: 2.0
- Average comments per pull request: 0.55
- Merged pull requests: 34
- Bot issues: 0
- Bot pull requests: 0
Past Year
- Issues: 1
- Pull requests: 16
- Average time to close issues: 7 days
- Average time to close pull requests: 17 days
- Issue authors: 1
- Pull request authors: 4
- Average comments per issue: 0.0
- Average comments per pull request: 0.38
- Merged pull requests: 7
- Bot issues: 0
- Bot pull requests: 0
Top Authors
Issue Authors
- gabrielinnocenti (1)
- jen-reeve (1)
- cae803 (1)
- drpatelh (1)
- MinLuke (1)
- maxibor (1)
- meret-haeusler (1)
- ewels (1)
Pull Request Authors
- nf-core-bot (30)
- maxibor (29)
- MeriamOs (11)
- jen-reeve (2)
- maxulysse (2)
- KevinMenden (1)
Top Labels
Issue Labels
Pull Request Labels
Dependencies
- actions/checkout v2 composite
- actions/checkout v2 composite
- actions/checkout v1 composite
- actions/setup-node v2 composite
- actions/setup-node v1 composite
- actions/setup-python v1 composite
- condaforge/mambaforge latest build
- cachecontrol ==0.12.11
- cython ==0.29.32
- ete3 ==3.1.2
- h5py ==3.7.0
- hdmedians ==0.14.2
- joblib ==1.2.0
- jupyter-client ==6.1.12
- jupyter-console ==6.4.0
- llvmlite ==0.39.1
- lockfile ==0.12.2
- matplotlib ==3.5.3
- msgpack ==1.0.4
- natsort ==8.2.0
- numba ==0.56.3
- pymdown-extensions ==9.7
- pynndescent ==0.5.8
- pyyaml ==5.4.1
- scikit-bio ==0.5.7
- scikit-learn ==1.1.3
- scipy ==1.8.1
- sourcepredict ==0.5
- threadpoolctl ==3.1.0
- tqdm ==4.64.1
- umap-learn ==0.5.3