229-swin-umamba-mamba-based-unet-with-imagenet-based-pretraining

https://github.com/szu-advtech-2024/229-swin-umamba-mamba-based-unet-with-imagenet-based-pretraining

Science Score: 41.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
    Found CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
  • DOI references
  • Academic publication links
    Links to: arxiv.org
  • Academic email domains
  • Institutional organization owner
  • JOSS paper metadata
  • Scientific vocabulary similarity
    Low similarity (9.7%) to scientific vocabulary

Scientific Fields

Artificial Intelligence and Machine Learning Computer Science - 60% confidence
Last synced: 4 months ago · JSON representation ·

Repository

Basic Info
  • Host: GitHub
  • Owner: SZU-AdvTech-2024
  • Default Branch: main
  • Size: 0 Bytes
Statistics
  • Stars: 0
  • Watchers: 0
  • Forks: 0
  • Open Issues: 0
  • Releases: 0
Created 12 months ago · Last pushed 12 months ago
Metadata Files
Citation

https://github.com/SZU-AdvTech-2024/229-Swin-UMamba-Mamba-based-UNet-with-ImageNet-based-Pretraining/blob/main/

# Swin-UMamba: Mamba-based UNet with ImageNet-based pretraining

Official repository for: *[Swin-UMamba: Mamba-based UNet with ImageNet-based pretraining](https://arxiv.org/abs/2402.03302)*

![network](https://github.com/JiarunLiu/Swin-UMamba/blob/main/assets/swin-umamba.png)

## Main Results

- AbdomenMRI


- Endoscopy


- Microscopy


## Installation

**Step-1:** Create a new conda environment & install requirements

```shell
conda create -n swin_umamba python=3.10
conda activate swin_umamba

pip install torch==2.0.1 torchvision==0.15.2
pip install causal-conv1d==1.1.1
pip install mamba-ssm
pip install torchinfo timm numba
```

**Step-2:** Install Swin-UMamba

```shell
git clone https://github.com/JiarunLiu/Swin-UMamba
cd Swin-UMamba/swin_umamba
pip install -e .
```

## Prepare data & pretrained model

**Dataset:**  

We use the same data & processing strategy following U-Mamba. Download dataset from [U-Mamba](https://github.com/bowang-lab/U-Mamba) and put them into the data folder. Then preprocess the dataset with following command:

```shell
nnUNetv2_plan_and_preprocess -d DATASET_ID --verify_dataset_integrity
```

**ImageNet pretrained model:** 

We use the ImageNet pretrained VMamba-Tiny model from [VMamba](https://github.com/MzeroMiko/VMamba). You need to download the model checkpoint and put it into `data/pretrained/vmamba/vmamba_tiny_e292.pth`

```
wget https://github.com/MzeroMiko/VMamba/releases/download/%2320240218/vssmtiny_dp01_ckpt_epoch_292.pth
mv vssmtiny_dp01_ckpt_epoch_292.pth data/pretrained/vmamba/vmamba_tiny_e292.pth
```

## Training

Using the following command to train & evaluate Swin-UMamba

```shell
# AbdomenMR dataset
bash scripts/train_AbdomenMR.sh MODEL_NAME
# Endoscopy dataset
bash scripts/train_Endoscopy.sh MODEL_NAME
# Microscopy dataset 
bash scripts/train_Microscopy.sh MODEL_NAME
```

Here  `MODEL_NAME` can be:

- `nnUNetTrainerSwinUMamba`: Swin-UMamba model with ImageNet pretraining
- `nnUNetTrainerSwinUMambaD`: Swin-UMamba$\dagger$  model with ImageNet pretraining
- `nnUNetTrainerSwinUMambaScratch`: Swin-UMamba model without ImageNet pretraining
- `nnUNetTrainerSwinUMambaDScratch`: Swin-UMamba$\dagger$  model without ImageNet pretraining

You can download our model checkpoints [here](https://drive.google.com/drive/folders/1zOt0ZfQPjoPdY37NfLKevYs4x5eClThN?usp=sharing).

## Acknowledgements

We thank the authors of [nnU-Net](https://github.com/MIC-DKFZ/nnUNet), [Mamba](https://github.com/state-spaces/mamba), [UMamba](https://github.com/bowang-lab/U-Mamba), [VMamba](https://github.com/MzeroMiko/VMamba), and [Swin-Unet](https://github.com/HuCaoFighting/Swin-Unet) for making their valuable code & data publicly available.

## Citation

```
@article{Swin-UMamba,
    title={Swin-UMamba: Mamba-based UNet with ImageNet-based pretraining},
    author={Jiarun Liu and Hao Yang and Hong-Yu Zhou and Yan Xi and Lequan Yu and Yizhou Yu and Yong Liang and Guangming Shi and Shaoting Zhang and Hairong Zheng and Shanshan Wang},
    journal={arXiv preprint arXiv:2402.03302},
    year={2024}
}
```

Owner

  • Name: SZU-AdvTech-2024
  • Login: SZU-AdvTech-2024
  • Kind: organization

Citation (citation.txt)

@article{REPO229,
    author = "Liu, J. et al.",
    journal = "Medical Image Computing and Computer Assisted Intervention – MICCAI 2024",
    number = "",
    title = "{Swin-UMamba: Mamba-Based UNet with ImageNet-Based Pretraining}",
    volume = "15009",
    year = "2024"
}

GitHub Events

Total
  • Watch event: 2
  • Push event: 2
  • Create event: 3
Last Year
  • Watch event: 2
  • Push event: 2
  • Create event: 3