296-continuous-optical-zooming-a-benchmark-for-arbitrary-scale-image-super-resolution-in-real-worl

https://github.com/szu-advtech-2024/296-continuous-optical-zooming-a-benchmark-for-arbitrary-scale-image-super-resolution-in-real-worl

Science Score: 13.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
  • DOI references
  • Academic publication links
  • Academic email domains
  • Institutional organization owner
  • JOSS paper metadata
  • Scientific vocabulary similarity
    Low similarity (7.1%) to scientific vocabulary

Scientific Fields

Artificial Intelligence and Machine Learning Computer Science - 60% confidence
Last synced: 4 months ago · JSON representation

Repository

Basic Info
  • Host: GitHub
  • Owner: SZU-AdvTech-2024
  • Default Branch: main
  • Size: 0 Bytes
Statistics
  • Stars: 0
  • Watchers: 0
  • Forks: 0
  • Open Issues: 0
  • Releases: 0
Created 12 months ago · Last pushed 12 months ago
Metadata Files
Citation

https://github.com/SZU-AdvTech-2024/296-Continuous-Optical-Zooming-A-Benchmark-for-Arbitrary-Scale-Image-Super-Resolution-in-Real-Worl/blob/main/

## Continuous Optical Zooming Dataset

Our dataset is availble at [COZ - Google Drive](https://drive.google.com/drive/folders/196vQw7Y6aLnoEsRYDV3MOETL7YU9HrDQ).

## Local Mix Implicit Network for Arbitrary-Scale Image Super-Resolution (LMI)

Official PyTorch implementation of LMI network.

### Installation

Our code is based on Ubuntu 20.04, pytorch 1.11.0, CUDA 11.3 (NVIDIA RTX 3090 24GB, NVIDIA A40 48GB) and python 3.8.

### Data Preparation

Download our dataset and unzip it in the current directory.

### Train & Test

##### **EDSR-Baseline-LMI**

**Train**: `python train_real.py --config configs/train-real/lmi-edsr-baseline.yaml`

**Test**: `python test_real.py --config configs/test/test-RealAbrSR.yaml --model save/LMI-edsr-baseline/epoch-best.pth`

##### **RDN-LMI**

**Train**: `python train_real.py --config configs/train-real/lmi-rdn.yaml `

**Test**: `python test_real.py --config configs/test/test-RealAbrSR.yaml --model save/LMI-rdn/epoch-best.pth`

We use NVIDIA RTX 3090 24GB for training, and NVIDIA A40 48GB for testing.

### Pretrained Checkpoints

**[EDSR-Baseline-LMI](https://drive.google.com/file/d/1-18tDJduD3sqYVOBPhu19YnJaHDkOiGr/view?usp=drive_link)**

**[RDN-LMI](https://drive.google.com/file/d/1-1iASRRn604jwgzxOy7NHdjX_EQ7L3L-/view?usp=drive_link)**

### Acknowledgements

This code is built on [LIIF](https://github.com/yinboc/liif) and [LTE](https://github.com/jaewon-lee-b/lte).  We thank the authors for sharing their codes.

## Citation

If you find our work useful in your research, please consider citing our paper:

> ```
> @InProceedings{Fu_2024_CVPR,
>     author    = {Fu, Huiyuan and Peng, Fei and Li, Xianwei and Li, Yejun and Wang, Xin and Ma, Huadong},
>     title     = {Continuous Optical Zooming: A Benchmark for Arbitrary-Scale Image Super-Resolution in Real World},
>     booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
>     month     = {June},
>     year      = {2024},
>     pages     = {3035-3044}
> }
> ```

Owner

  • Name: SZU-AdvTech-2024
  • Login: SZU-AdvTech-2024
  • Kind: organization

GitHub Events

Total
  • Watch event: 1
  • Push event: 2
  • Create event: 2
Last Year
  • Watch event: 1
  • Push event: 2
  • Create event: 2