296-continuous-optical-zooming-a-benchmark-for-arbitrary-scale-image-super-resolution-in-real-worl
Science Score: 13.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
○CITATION.cff file
-
✓codemeta.json file
Found codemeta.json file -
○.zenodo.json file
-
○DOI references
-
○Academic publication links
-
○Academic email domains
-
○Institutional organization owner
-
○JOSS paper metadata
-
○Scientific vocabulary similarity
Low similarity (7.1%) to scientific vocabulary
Scientific Fields
Artificial Intelligence and Machine Learning
Computer Science -
60% confidence
Last synced: 4 months ago
·
JSON representation
Repository
Basic Info
- Host: GitHub
- Owner: SZU-AdvTech-2024
- Default Branch: main
- Size: 0 Bytes
Statistics
- Stars: 0
- Watchers: 0
- Forks: 0
- Open Issues: 0
- Releases: 0
Created 12 months ago
· Last pushed 12 months ago
Metadata Files
Citation
https://github.com/SZU-AdvTech-2024/296-Continuous-Optical-Zooming-A-Benchmark-for-Arbitrary-Scale-Image-Super-Resolution-in-Real-Worl/blob/main/
## Continuous Optical Zooming Dataset
Our dataset is availble at [COZ - Google Drive](https://drive.google.com/drive/folders/196vQw7Y6aLnoEsRYDV3MOETL7YU9HrDQ).
## Local Mix Implicit Network for Arbitrary-Scale Image Super-Resolution (LMI)
Official PyTorch implementation of LMI network.
### Installation
Our code is based on Ubuntu 20.04, pytorch 1.11.0, CUDA 11.3 (NVIDIA RTX 3090 24GB, NVIDIA A40 48GB) and python 3.8.
### Data Preparation
Download our dataset and unzip it in the current directory.
### Train & Test
##### **EDSR-Baseline-LMI**
**Train**: `python train_real.py --config configs/train-real/lmi-edsr-baseline.yaml`
**Test**: `python test_real.py --config configs/test/test-RealAbrSR.yaml --model save/LMI-edsr-baseline/epoch-best.pth`
##### **RDN-LMI**
**Train**: `python train_real.py --config configs/train-real/lmi-rdn.yaml `
**Test**: `python test_real.py --config configs/test/test-RealAbrSR.yaml --model save/LMI-rdn/epoch-best.pth`
We use NVIDIA RTX 3090 24GB for training, and NVIDIA A40 48GB for testing.
### Pretrained Checkpoints
**[EDSR-Baseline-LMI](https://drive.google.com/file/d/1-18tDJduD3sqYVOBPhu19YnJaHDkOiGr/view?usp=drive_link)**
**[RDN-LMI](https://drive.google.com/file/d/1-1iASRRn604jwgzxOy7NHdjX_EQ7L3L-/view?usp=drive_link)**
### Acknowledgements
This code is built on [LIIF](https://github.com/yinboc/liif) and [LTE](https://github.com/jaewon-lee-b/lte). We thank the authors for sharing their codes.
## Citation
If you find our work useful in your research, please consider citing our paper:
> ```
> @InProceedings{Fu_2024_CVPR,
> author = {Fu, Huiyuan and Peng, Fei and Li, Xianwei and Li, Yejun and Wang, Xin and Ma, Huadong},
> title = {Continuous Optical Zooming: A Benchmark for Arbitrary-Scale Image Super-Resolution in Real World},
> booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
> month = {June},
> year = {2024},
> pages = {3035-3044}
> }
> ```
Owner
- Name: SZU-AdvTech-2024
- Login: SZU-AdvTech-2024
- Kind: organization
- Repositories: 1
- Profile: https://github.com/SZU-AdvTech-2024
GitHub Events
Total
- Watch event: 1
- Push event: 2
- Create event: 2
Last Year
- Watch event: 1
- Push event: 2
- Create event: 2