minari
A standard format for offline reinforcement learning datasets, with popular reference datasets and related utilities
Science Score: 57.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
✓CITATION.cff file
Found CITATION.cff file -
✓codemeta.json file
Found codemeta.json file -
✓.zenodo.json file
Found .zenodo.json file -
✓DOI references
Found 5 DOI reference(s) in README -
○Academic publication links
-
○Committers with academic emails
-
○Institutional organization owner
-
○JOSS paper metadata
-
○Scientific vocabulary similarity
Low similarity (17.5%) to scientific vocabulary
Keywords
Keywords from Contributors
Repository
A standard format for offline reinforcement learning datasets, with popular reference datasets and related utilities
Basic Info
- Host: GitHub
- Owner: Farama-Foundation
- License: other
- Language: Python
- Default Branch: main
- Homepage: https://minari.farama.org
- Size: 1.86 GB
Statistics
- Stars: 423
- Watchers: 11
- Forks: 61
- Open Issues: 19
- Releases: 13
Topics
Metadata Files
README.md
Minari is a Python library for conducting research in offline reinforcement learning, akin to an offline version of Gymnasium or an offline RL version of HuggingFace's datasets library.
The documentation website is at minari.farama.org. We also have a public discord server (which we use for Q&A and to coordinate development work) that you can join here: https://discord.gg/bnJ6kubTg6.
Installation
To install Minari from PyPI:
bash
pip install minari
This will install the minimum required dependencies. Additional dependencies will be prompted for installation based on your use case. To install all dependencies at once, use:
bash
pip install "minari[all]"
If you'd like to start testing or contribute to Minari please install this project from source with:
git clone https://github.com/Farama-Foundation/Minari.git --single-branch
cd Minari
pip install -e ".[all]"
Command Line API
To check available remote datasets:
bash
minari list remote
To download a dataset:
bash
minari download D4RL/door/human-v2
To check available local datasets:
bash
minari list local
To show the details of a dataset:
bash
minari show D4RL/door/human-v2
For the list of commands:
bash
minari --help
Basic Usage
Reading a Dataset
```python import minari
dataset = minari.load_dataset("D4RL/door/human-v2")
for episodedata in dataset.iterateepisodes(): observations = episodedata.observations actions = episodedata.actions rewards = episodedata.rewards terminations = episodedata.terminations truncations = episodedata.truncations infos = episodedata.infos ... ```
Writing a Dataset
```python import minari import gymnasium as gym from minari import DataCollector
env = gym.make('FrozenLake-v1') env = DataCollector(env)
for _ in range(100): env.reset() done = False while not done: action = env.action_space.sample() # <- use your policy here obs, rew, terminated, truncated, info = env.step(action) done = terminated or truncated
dataset = env.create_dataset("frozenlake/test-v0") ```
For other examples, see Basic Usage. For a complete tutorial on how to create new datasets using Minari, see our Pointmaze D4RL Dataset tutorial, which re-creates the Maze2D datasets from D4RL.
Training Libraries Integrating Minari
Citation
If you use Minari, please consider citing it:
@software{minari,
author = {Younis, Omar G. and Perez-Vicente, Rodrigo and Balis, John U. and Dudley, Will and Davey, Alex and Terry, Jordan K},
doi = {10.5281/zenodo.13767625},
month = sep,
publisher = {Zenodo},
title = {Minari},
url = {https://doi.org/10.5281/zenodo.13767625},
version = {0.5.0},
year = 2024,
bdsk-url-1 = {https://doi.org/10.5281/zenodo.13767625}
}
Minari is a shortening of Minarai, the Japanese word for "learning by observation".
Owner
- Name: Farama Foundation
- Login: Farama-Foundation
- Kind: organization
- Email: contact@farama.org
- Website: farama.org
- Twitter: FaramaFound
- Repositories: 49
- Profile: https://github.com/Farama-Foundation
The Farama foundation is a nonprofit organization working to develop and maintain open source reinforcement learning tools.
Citation (CITATION.cff)
cff-version: 1.2.0 message: "If you use this software, please cite it as below." authors: - name: "Minari Contributors" title: "Minari: A dataset API for Offline Reinforcement Learning" date-released: 2023-05-17
GitHub Events
Total
- Create event: 6
- Release event: 2
- Issues event: 31
- Watch event: 142
- Delete event: 2
- Issue comment event: 74
- Push event: 60
- Pull request event: 67
- Pull request review event: 23
- Pull request review comment event: 13
- Fork event: 17
Last Year
- Create event: 6
- Release event: 2
- Issues event: 31
- Watch event: 142
- Delete event: 2
- Issue comment event: 74
- Push event: 60
- Pull request event: 67
- Pull request review event: 23
- Pull request review comment event: 13
- Fork event: 17
Committers
Last synced: about 2 years ago
Top Committers
| Name | Commits | |
|---|---|---|
| will | w****6@l****k | 115 |
| Rodrigo de Lazcano | r****6@g****m | 46 |
| Will Dudley | 1****y | 27 |
| Omar Younis | 4****k | 15 |
| John Balis | p****s@g****m | 11 |
| Jordan Terry | j****0@g****m | 7 |
| WillDudley | W****6@l****k | 7 |
| Alex Davey | a****0@g****m | 5 |
| Jet | 3****s | 5 |
| Elliot Tower | e****t@e****m | 4 |
| Alexander Nikulin | h****h@g****m | 4 |
| Manuel Goulão | m****o@g****m | 4 |
| Shreyans Jain | j****8@g****m | 4 |
| graham | g****t@g****m | 3 |
| Aaron Marquez | a****1@g****m | 2 |
| Tosin Oseni | o****i@g****m | 2 |
| Zhiyuan | 3****h | 2 |
| Vijay Alagappan | 3****e | 2 |
| Elliot Tower | 3****r | 2 |
| Aaron Marquez | 1****o | 2 |
| Mark Towers | m****s@g****m | 1 |
| Ariel Kwiatkowski | a****i@g****m | 1 |
| Anthony Chang | 4****s | 1 |
| DeeDive | 4****e | 1 |
Committer Domains (Top 20 + Academic)
Issues and Pull Requests
Last synced: 6 months ago
All Time
- Total issues: 78
- Total pull requests: 246
- Average time to close issues: 2 months
- Average time to close pull requests: 16 days
- Total issue authors: 50
- Total pull request authors: 39
- Average comments per issue: 2.68
- Average comments per pull request: 0.86
- Merged pull requests: 209
- Bot issues: 0
- Bot pull requests: 0
Past Year
- Issues: 26
- Pull requests: 64
- Average time to close issues: 25 days
- Average time to close pull requests: 7 days
- Issue authors: 21
- Pull request authors: 11
- Average comments per issue: 2.35
- Average comments per pull request: 0.48
- Merged pull requests: 50
- Bot issues: 0
- Bot pull requests: 0
Top Authors
Issue Authors
- jamartinh (7)
- im-Kitsch (6)
- Howuhh (4)
- younik (4)
- WillDudley (4)
- Kallinteris-Andreas (4)
- umutucak (3)
- JustinS6626 (2)
- kaixin96 (2)
- rodrigodelazcano (2)
- GongXudong (1)
- RedTachyon (1)
- EmptyJackson (1)
- carlosgmartin (1)
- prajjwal1 (1)
Pull Request Authors
- younik (131)
- rodrigodelazcano (34)
- WillDudley (22)
- alexdavey (16)
- balisujohn (12)
- tomekster (6)
- wakened2024 (6)
- pseudo-rnd-thoughts (6)
- elliottower (6)
- shreyansjainn (6)
- enerrio (5)
- Howuhh (4)
- jamartinh (4)
- im-Kitsch (3)
- grahamannett (3)
Top Labels
Issue Labels
Pull Request Labels
Packages
- Total packages: 3
-
Total downloads:
- pypi 10,226 last-month
- Total docker downloads: 155
-
Total dependent packages: 3
(may contain duplicates) -
Total dependent repositories: 1
(may contain duplicates) - Total versions: 34
- Total maintainers: 3
proxy.golang.org: github.com/farama-foundation/minari
- Documentation: https://pkg.go.dev/github.com/farama-foundation/minari#section-documentation
- License: other
-
Latest release: v0.5.3
published 10 months ago
Rankings
proxy.golang.org: github.com/Farama-Foundation/Minari
- Documentation: https://pkg.go.dev/github.com/Farama-Foundation/Minari#section-documentation
- License: other
-
Latest release: v0.5.3
published 10 months ago
Rankings
pypi.org: minari
A standard format for offline reinforcement learning datasets, with popular reference datasets and related utilities.
- Homepage: https://farama.org
- Documentation: https://minari.farama.org/
- License: MIT License
-
Latest release: 0.5.3
published 10 months ago
Rankings
Maintainers (3)
Dependencies
- furo *
- myst-parser *
- sphinx *
- numpy >=1.18.0
- JamesIves/github-pages-deploy-action v4 composite
- actions/checkout v3 composite
- actions/setup-python v4 composite
- dawidd6/action-get-tag v1 composite
- JamesIves/github-pages-deploy-action v4 composite
- actions/checkout v3 composite
- actions/setup-python v4 composite
- actions/checkout v3 composite
- actions/download-artifact v2 composite
- actions/setup-python v2 composite
- actions/upload-artifact v2 composite
- pypa/gh-action-pypi-publish release/v1 composite
- actions/checkout v3 composite
- actions/setup-python v3 composite
- actions/checkout v3 composite
- actions/setup-python v3 composite
- JamesIves/github-pages-deploy-action v4 composite
- actions/checkout v3 composite
- actions/setup-python v4 composite
- actions/checkout v3 composite
- actions/setup-python v3 composite
- cython * test
- gymnasium spec_stack test
- gymnasium-robotics * test
- cython * test
- numpy * test
- cython * test
- h5py * test
- structlog * test
- tensorboardX * test
- typing_extensions * test
- cython *
- gymnasium spec_stack
- gymnasium-robotics *
- cython *
- numpy *
- cython *
- h5py *
- structlog *
- tensorboardX *
- typing_extensions *
- cython *
- google-cloud-storage *
- h5py *
- structlog *
- tensorboardX *
- typing_extensions *